Argonaute proteins use nucleic acid guides to find and bind specific DNA or RNA target sequences. Argonaute proteins have diverse biological functions and many retain their ancestral endoribonuclease activity, cleaving the phosphodiester bond between target nucleotides t10 and t11. In animals, the PIWI proteins—a specialized class of Argonaute proteins—use 21–35 nucleotide PIWI-interacting RNAs (piRNAs) to direct transposon silencing, protect the germline genome, and regulate gene expression during gametogenesis1. The piRNA pathway is required for fertility in one or both sexes of nearly all animals. Both piRNA production and function require RNA cleavage catalysed by PIWI proteins. Spermatogenesis in mice and other placental mammals requires three distinct, developmentally regulated PIWI proteins: MIWI (PIWIL1), MILI (PIWIL2) and MIWI22–4 (PIWIL4). The piRNA-guided endoribonuclease activities of MIWI and MILI are essential for the production of functional sperm5,6. piRNA-directed silencing in mice and insects also requires GTSF1, a PIWI-associated protein of unknown function7–12. Here we report that GTSF1 potentiates the weak, intrinsic, piRNA-directed RNA cleavage activities of PIWI proteins, transforming them into efficient endoribonucleases. GTSF1 is thus an example of an auxiliary protein that potentiates the catalytic activity of an Argonaute protein.
SummaryPiwi proteins use PIWI-interacting RNAs (piRNAs) to identify and silence the transposable elements (TEs) pervasively found in animal genomes. The Piwi targeting mechanism is proposed to be similar to targeting by Argonaute proteins, which employ microRNA (miRNA) guides to repress cellular mRNAs, but has not been characterized in detail. We present cryo-EM structures of a Piwi-piRNA complex with and without target RNAs and analysis of target recognition. Resembling Argonaute, Piwi identifies targets using the piRNA seed-region. However, Piwi creates a much weaker seed so that prolonged target association requires further piRNA-target pairing. Beyond the seed, Piwi creates wide central cleft wide for unencumbered piRNA-target pairing, enabling long-lived Piwi-piRNA-target interactions that are tolerant of mismatches. Piwi ensures targeting fidelity by blocking propagation of the piRNA-target duplex in the absence of faithful seed pairing, and by requiring extended piRNA-target pairing to reach an endonucleolytically active conformation. This mechanism allows Piwi to minimize off-targeting cellular mRNAs and adapt piRNA sequences to evolving genomic threats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.