BackgroundWe conducted spatial analyses to determine the geographic variation of cancer at the neighbourhood level (dissemination areas or DAs) within the area of a single Ontario public health unit, Wellington-Dufferin-Guelph, covering a population of 238,326 inhabitants. Cancer incidence data between 1999 and 2003 were obtained from the Ontario Cancer Registry and were geocoded down to the level of DA using the enhanced Postal Code Conversion File. The 2001 Census of Canada provided information on the size and age-sex structure of the population at the DA level, in addition to information about selected census covariates, such as average neighbourhood income.ResultsAge standardized incidence ratios for cancer and the prevalence of census covariates were calculated for each of 331 dissemination areas in Wellington-Dufferin-Guelph. The standardized incidence ratios (SIR) for cancer varied dramatically across the dissemination areas. However, application of the Moran's I statistic, a popular index of spatial autocorrelation, suggested significant spatial patterns for only two cancers, lung and prostate, both in males (p < 0.001 and p = 0.002, respectively). Employing Bayesian hierarchical models, areas in the urban core of the City of Guelph had significantly higher SIRs for male lung cancer than the remainder of Wellington-Dufferin-Guelph; and, neighbourhoods in the urban and surrounding rural areas of Orangeville exhibited significantly higher SIRs for prostate cancer. After adjustment for age and spatial dependence, average household income attenuated much of the spatial pattern of lung cancer, but not of prostate cancer.ConclusionThis paper demonstrates the feasibility and utility of a systematic approach to identifying neighbourhoods, within the area served by a public health unit, that have significantly higher risks of cancer. This exploratory, ecologic study suggests several hypotheses for these spatial patterns that warrant further investigations. To the best of our knowledge, this is the first Canadian study published in the peer-reviewed literature estimating the risk of relatively rare public health outcomes at a very small areal level, namely dissemination areas.
Background Premature mortality is a meaningful indicator of both population health and health system performance, which varies by geography in Ontario. We used the Local Health Integration Network (LHIN) sub-regions to conduct a spatial analysis of premature mortality, adjusting for key population-level demographic and behavioural characteristics. Methods We used linked vital statistics data to identify 163,920 adult premature deaths (deaths between ages 18 and 74) registered in Ontario between 2011 and 2015. We compared premature mortality rates, population demographics, and prevalence of health-relevant behaviours across 76 LHIN sub-regions. We used Bayesian hierarchical spatial models to quantify the contribution of these population characteristics to geographic disparities in premature mortality. Results LHIN sub-region premature mortality rates ranged from 1.7 to 6.6 deaths per 1000 per year in males and 1.2 to 4.8 deaths per 1000 per year in females. Regions with higher premature mortality had fewer immigrants and higher prevalence of material deprivation, excess body weight, inadequate fruit and vegetable consumption, sedentary behaviour, and ever-smoked status. Adjusting for all variables eliminated close to 90% of geographic variation in premature mortality, but did not fully explain the spatial pattern of premature mortality in Ontario. Conclusions We conducted the first spatial analysis of mortality in Ontario, revealing large geographic variations. We demonstrate that well-known risk factors explain most of the observed variation in premature mortality. The result emphasizes the importance of population health efforts to reduce the burden of well-known risk factors to reduce variation in premature mortality. Electronic supplementary material The online version of this article (10.1186/s12963-019-0193-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.