Power method polynomial transformations are commonly used for simulating continuous nonnormal distributions with specified moments. However, conventional moment-based estimators can a be substantially biased, b have high variance, or c be influenced by outliers. In view of these concerns, a characterization of power method transformations by L-moments is introduced. Specifically, systems of equations are derived for determining coefficients for specified L-moment ratios, which are associated with standard normal and standard logistic-based polynomials of order five and three. Boundaries for L-moment ratios are also derived, and closed-formed formulae are provided for determining if a power method distribution has a valid probability density function. It is demonstrated that L-moment estimators are nearly unbiased and have relatively small variance in the context of the power method. Examples of fitting power method distributions to theoretical and empirical distributions based on the method of L-moments are also provided.
The power method polynomial transformation is a popular algorithm used for simulating non-normal distributions because of its simplicity and ease of execution. The primary limitations of the power method transformation are that its probability density function (pdf) and cumulative distribution function (cdf) are unknown. In view of this, the power method's pdf and cdf are derived in general form. More specific properties are also derived for determining if a given transformation will also have an associated pdf in the context of polynomials of order three and five. Numerical examples and parametric plots of power method densities are provided to confirm and demonstrate the methodology. It is also shown how the power method transformation can be applied in the context of parameter estimation and distribution fitting using data from the National Institute on Alcohol Abuse and Alcoholism study Project MATCH.
The Tukey family of g-and-h distributions is often used to model univariate real-world data. There is a paucity of research demonstrating appropriate multivariate data generation using the g-and-h family of distributions with specified correlations. Therefore, the methodology and algorithms are presented to extend the g-and-h family from univariate to multivariate data generation. An example is provided along with a Monte Carlo simulation demonstrating the methodology. In addition, algorithms written in Mathematica 7.0 are available from the authors for implementing the procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.