QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.
We present a quantum Monte Carlo study of the hydrogen-benzene system where binding is very weak. We demonstrate that the binding is well described at both variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) levels by a Jastrow correlated single determinant geminal wave function with an optimized compact basis set that includes diffuse orbitals. Agreement between VMC and fixed-node DMC binding energies is found to be within 0.18 mhartree, suggesting that the calculations are well converged with respect to the basis. Essentially the same binding is also found in independent DMC calculations using a different trial wave function of a more conventional Slater-Jastrow form, supporting our conclusion that the binding energy is accurate and includes all effects of correlation. We compare with previous calculations, and we discuss the physical mechanisms of the interaction, the role of diffuse basis functions, and the charge redistribution in the bond.
The remarkable properties of graphene, including unusually high mechanical strength and stiffness, have been well-documented. In this paper, we combine an analytical solution for ballistic impact into a thin isotropic membrane, with ab initio density functional theory calculations for graphene under uniaxial tension, to predict the penetration resistance of multilayer graphene membranes. The calculations show that continuous graphene membranes could enable ballistic barriers of extraordinary performance, enabling resistance to penetration at masses up to 100 lighter than existing state-of-the-art barrier materials. The very high elastic wave speed and strain energy to failure are the major drivers of this increase in performance.However, the in-plane mechanical isotropy of graphene, as compared to conventional orthotropic © 2015. This manuscript version is made available under the Elsevier user license http://www.elsevier.com/open-access/userlicense/1.0/ Wetzel et al., "A Theoretical Consideration of the Ballistic Response of Continuous Graphene Membranes" 2 woven textiles, also contributes significantly to the efficiency of graphene as a barrier material.This result suggests that, for barrier applications, isotropic membranes composed of covalently bonded two-dimensional molecular networks could provide distinct advantages over fiber-based textiles derived from linear polymers.
The linear polymer poly(p-phenylene terephthalamide), better known by its tradename Kevlar, is an icon of modern materials science due to its remarkable strength, stiffness, and environmental resistance. Here, we propose a new two-dimensional (2D) polymer, “graphamid”, that closely resembles Kevlar in chemical structure, but is mechanically advantaged by virtue of its 2D structure. Using atomistic calculations, we show that graphamid comprises covalently-bonded sheets bridged by a high population of strong intermolecular hydrogen bonds. Molecular and micromechanical calculations predict that these strong intermolecular interactions allow stiff, high strength (6–8 GPa), and tough films from ensembles of finite graphamid molecules. In contrast, traditional 2D materials like graphene have weak intermolecular interactions, leading to ensembles of low strength (0.1–0.5 GPa) and brittle fracture behavior. These results suggest that hydrogen-bonded 2D polymers like graphamid would be transformative in enabling scalable, lightweight, high performance polymer films of unprecedented mechanical performance.
As the simplest two-dimensional (2D) polymer, graphene has immensely high intrinsic strength and elastic stiffness but has limited toughness due to brittle fracture. We use atomistic simulations to explore a new class of graphene/polyethylene hybrid 2D polymer, "graphylene", that exhibits ductile fracture mechanisms and has a higher fracture toughness and flaw tolerance than graphene. A specific configuration of this 2D polymer hybrid, denoted "GrE-2" for the two-carbon-long ethylene chains connecting benzene rings in the inherent framework, is prioritized for study. MD simulations of crack propagation show that the energy release rate to propagate a crack in GrE-2 is twice that of graphene. We also demonstrate that GrE-2 exhibits delocalized failure and other energy-dissipating fracture mechanisms such as crack branching and bridging. These results demonstrate that 2D polymers can be uniquely tailored to achieve a balance of fracture toughness with mechanical stiffness and strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.