The purpose of this review is to highlight the versatility of membrane introduction mass spectrometry (MIMS) in environmental applications, summarize the measurements of environmental volatile organic compounds (VOCs) accomplished using MIMS, present developments in the detection of semi-volatile organic compounds (SVOCs) and forecast possible future directions of MIMS in environmental applications.
We present results for the near-real-time, on-line detection of methanol in both air and water using membrane introduction mass spectrometry (MIMS). In these experiments, we compare the sensitivity of a poly(dimethylsiloxane) (PDMS) membrane and an allyl alcohol (AA) membrane to the detection of methanol. In MIMS, the membrane serves as the interface between the sample and the vacuum of the mass spectrometer. Membrane-diffused water was used as the reagent ion (H3O+) for chemical ionization of methanol in an ion trap mass spectrometer. Linear calibration curves have been obtained for methanol using both PDMS and AA membranes. For PDMS, detection limits of methanol are 14 ppmv and 5 ppm in air and water, respectively. For AA, detection limits are 3.3 ppmv and 2 ppm in air and water, respectively. We demonstrate that the sensitivity of the analysis can be altered by the chemistry of the membrane. When the AA membrane is used, the sensitivity of MIMS is enhanced over that of PDMS by a factor of 8.5 for methanol in air and by a factor of 23.4 for methanol in water.
We emphasize two points: (l) the properties and mechanisms of very low-fluence ablation of copper surfaces and (2) the sensitivity and selectivity of resonant laser ablation (RLA). We present results for ablation of bulk copper and copper thin films; spot-size effects; the effects of surface-sample preparation and beam polarization; and an accurate measurement of material removal rates, typically ≤ 10(-3) Å at 35 mJ/cm(2). Velocity distributions were Maxwellian, with peak velocities ≈ 1-2 × 10(5) cm/s. In addition, we discuss the production of diffractionlike surface features, and the probable participation of nonthermal desorption mechanisms. RLA is shown to be a sensitive and useful diagnostic for studies of low-fluence laser-material interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.