In order to determine true radiometric quantities in intense fires a three dimensional (3D) understanding of the fire radiometric properties is desirable, e.g., for estimating peak fire temperatures. Imaging pyrometry with a single infrared camera view can provide only two dimensional path-averaged radiometric information. Multiple camera views, however, can form the basis for determining 3D radiometric information such as radiance, emissivity, and temperature. Analytically the fire can be divided into sub-volumes in which radiometric properties are assumed roughly constant. Using geometric and thermal equilibrium relationships between the fire sub-volumes, together with LWIR camera imagery acquired at multiple carefully defined camera views, radiometric properties of each sub-volume can be estimated. In this work, initial proof-of-principle results were obtained by applying this analysis to sets of LWIR camera imagery acquired during intense (2500 -3000 K) fires. We present 3D radiance and temperature maps of the fires obtained using this novel approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.