Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours.
Dopamine (DA) can promote or inhibit consummatory and reward-related behaviors by activating different receptor subtypes in the lateral hypothalamus and perifornical area (LH/PF). Because orexin neurons are involved in reward and localized in the LH/PF, DA may modulate these neurons to influence reward-related behaviors. To determine the cellular mechanism underlying dopaminergic modulation of orexin neurons, the effect of DA on excitatory transmission to these neurons was investigated using in vitro electrophysiology on rat brain slices. We found that low concentrations (0.1–1 µM) of DA increased evoked excitatory postsynaptic current amplitude while decreasing paired-pulse ratio. In contrast, high concentrations (10–100 µM) of DA did the opposite. The excitatory effect of low DA was blocked by the D1 receptor antagonist SCH-23390, whereas the inhibitory effect of high DA was blocked by the D2 receptor antagonist sulpiride. These results indicate distinct roles of D1 and D2 receptors in bidirectional presynaptic modulation of excitatory transmission. DA had stronger effects on isolated synaptic activity than repetitive ones, suggesting that sensitivity to dopaminergic modulation depends on the level of network activity. In orexin neurons from high-fat diet-fed rats, a high concentration of DA was less effective in suppressing repetitive synaptic activity compared with chow controls. Therefore, in diet-induced obesity, intense synaptic inputs may preferentially reach orexin neurons while intermittent signals are inhibited by high DA levels. In summary, our study provides a cellular mechanism by which DA may exert opposite behavioral effects in the LH/PF through bidirectional modulation of orexin neurons via different DA receptors.
Spontaneous glutamate release in the supraoptic nucleus is modulated by a number of inhibitory G protein coupled receptors (GPCR), including GABAB , adenosine A1 and group III metabotropic glutamate receptors (mGluR). It remains unclear whether they have distinct roles or are redundant mechanisms that protect from hyperexcitation. To address this question, we facilitated spontaneous glutamate release using nifedipine or forskolin, which act in a protein kinase A (PKA)-independent and -dependent manner, respectively, and tested the effects of inhibitory GPCR agonists. We found that a GABAB receptor (GABAB R) agonist specifically inhibited forskolin-induced miniature excitatory postsynaptic currents (mEPSC), in contrast to an adenosine A1 receptor (A1R) agonist, which specifically inhibited nifedipine-induced mEPSCs. This suggests that GABAB Rs and A1 Rs modulate independent mechanisms activated by forskolin and nifedipine, respectively. However, the inhibitory effects of GABAB R and A1 R agonists on basal mEPSCs occluded each other, suggesting that these receptors also have an overlapping role. Group III mGluRs appear to have a greater control over glutamate release because agonists to these receptors inhibited both nifedipine- and forskolin-induced mEPSCs. mEPSCs induced by norepinephrine had the same characteristics as those induced by forskolin [i.e. PKA-dependence and sensitivity to GABAB R and group III mGluR agonists, but not an A1 R agonist]. In summary, the present study highlights the differential effects of GABAB R, A1 R and mGluR agonists on glutamate release stimulated by different secretagogues, including the endogenous neuromodulator norepinephrine. These results suggest that the roles of these inhibitory GPCRs are not completely redundant, and also indicate the physiological implications of having different excitatory and inhibitory GPCRs on the same synapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.