Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA–viral peptide interaction as the major factor modulating durable control of HIV infection.
SUMMARYThe objective of this study was to examine the expression of toll-like receptors (TLRs) by the uterine epithelial cell line ECC-1 and to determine if stimulation of the expressed TLRs induces changes in cytokine and ⁄or chemokine secretion. The expression of TLR1 to TLR9 by ECC-1 cells was demonstrated by reverse transcription polymerase chain reaction, with only TLR10 not being expressed. Stimulation of ECC-1 cells using agonists to TLR2, TLR4 and TLR5 induced the expression of the chemokines interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1), as well as the pro-inflammatory cytokine IL-6, and occurred in a dose-dependent manner. In response to zymosan and flagellin, pathogen-associated molecular patterns (PAMP) that are recognized by TLR2 and TLR5 respectively, ECC-1 cells secreted significantly more IL-8, MCP-1 and IL-6 than in response to other TLR agonists. In contrast, agonists to TLR3, TLR7, and TLR9 had no effect on the secretion of the 13 cytokines or chemokines analysed. These results indicate that uterine epithelial cells are important sentinels of the innate immune system. Further it indicates that all but one of the known TLRs are expressed by ECC-1 cells and that stimulation through specific TLRs mediates changes in the expression of key chemokines and pro-inflammatory cytokines that aid in the defence of the uterus against potential pathogens.
The objective of this study was to examine the expression of TLR by human primary uterine epithelial cells (UEC) and to determine whether exposure to the TLR agonist poly(I:C) would induce an antiviral response. The secretion of several cytokines and chemokines was examined as well as the mRNA expression of human β-defensin-1 and -2 (HBD1 and HBD2), IFN-β, and the IFN-β-stimulated genes myxovirus resistance gene 1 and 2′,5′ oligoadenylate synthetase. The expression of TLR1–9 by UEC was demonstrated by RT-PCR, with only TLR10 not expressed. Stimulation of UEC with the TLR3 agonist poly(I:C) induced the expression of the proinflammatory cytokines TNF-α, IL-6, GM-CSF, and G-CSF, as well as the chemokines CXCL8/IL-8, CCL2/MCP-1, and CCL4/MIP-1β. In addition, poly(I:C) exposure induced the mRNA expression of HBD1 and HBD2 by 6- and 4-fold, respectively. Furthermore, upon exposure to poly(I:C) UEC initiated a potent antiviral response resulting in the induction of IFN-β mRNA expression 70-fold and myxovirus resistance gene 1 and 2′,5′ oligoadenylate synthetase mRNA expression (107- and 96-fold), respectively. These results suggest that epithelial cells that line the uterine cavity are sensitive to viral infection and/or exposure to viral dsRNA released from killed epithelial cells. Not only do UEC release proinflammatory cytokines and chemokines that mediate the initiation of an inflammatory response and recruitment of immune cells to the site of infection, but they also express β-defensins, IFN-β, and IFN-β-stimulated genes that can have a direct inhibiting effect on viral replication.
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface proteins that has been implicated as a progression factor in a number of pathologic conditions from chronic inflammation to cancer to Alzheimer's disease. In such conditions, RAGE acts to facilitate pathogenic processes. Its secreted isoform, soluble RAGE or sRAGE, has the ability to prevent RAGE signaling by acting as a decoy. sRAGE has been used successfully in animal models of a range of diseases to antagonize RAGE-mediated pathologic processes. In humans, sRAGE results from alternative splicing of RAGE mRNA. This study was aimed to determine whether the same holds true for mouse sRAGE and, in addition, to biochemically characterize mouse sRAGE. The biochemical characteristics examined include glycosylation and disulfide patterns. In addition, sRAGE was found to bind heparin, which may mediate its distribution in the extracellular matrix and cell surfaces of tissues. Finally, our data indicated that sRAGE in the mouse is likely produced by carboxyl-terminal truncation, in contrast to the alternative splicing mechanism reported in humans.
The concentrations of IL-8, IL-6, G-CSF and MCP-1 are similar to the levels found in reproductive tract fluids of patients with infection. The constitutive secretion and compartmentalization of large quantities of bioactive chemokines and cytokines provide additional evidence for the role of epithelial cells as gatekeepers of innate immune protection in the female reproductive tract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.