The structure of fish assemblages in five reaches of a high desert stream in northcentral Oregon was determined by snorkeling before and after a summer flash flood and two spring floods. One reach in each of two other streams that were unaffected by the first flood was used as a reference system. Stream reaches varied in habitat complexity as measured by hydraulic retention. Following the floods, hydraulically complex stream reaches lost proportionately fewer fish, had generally higher fish diversities, and had higher fish assemblage similarity than hydraulically simple stream reaches. Fish assemblages were resilient, and certain species such as speckled dace Rhinichthys osculus were exceptionally good at recoloni/ing disturbed habitats. Successful recruitment of different fish species depended, in part, on flood timing. Young of the year of species that spawn in early spring (e.g., rainbow trout Oncorhynchus mykiss) were more negatively affected by early spring floods than summer floods. Species that spawn later in the season (e.g., cyprinids and catostomids) were more negatively affected by summer flooding. Higher fish diversities in hydraulically complex reaches (lower disturbance intensity) after floods support predictions of the intermediate-disturbance hypothesis and suggest that fish assemblage resistance may be related to overall habitat complexity in these small streams.
Understanding the relative fitness of naturally spawning hatchery fish compared with wild fish has become an important issue in the management and conservation of salmonids. We used a DNA-based parentage analysis to measure the relative reproductive success of hatchery- and natural-origin spring Chinook salmon ( Oncorhynchus tshawytscha ) in the natural environment. Size and age had a large influence on male fitness, with larger and older males producing more offspring than smaller or younger individuals. Size had a significant effect on female fitness, but the effect was smaller than on male fitness. For both sexes, run time had a smaller but still significant effect on fitness, with earlier returning fish favored. Spawning location within the river had a significant effect on fitness for both sexes. Hatchery-origin fish produced about half the juvenile progeny per parent when spawning naturally than did natural-origin fish. Hatchery fish tended to be younger and return to lower areas of the watershed than wild fish, which explained some of their lower fitness.
Abstract.-Life history traits in hatchery and wild spring Chinook salmon Oncorhynchus tshawytscha from the upper Yakima River were compared to determine whether locally adapted traits had diverged after one generation of state-of-the-art artificial propagation. Sex composition in wild-and hatchery-origin fish differed in three of four brood years (P 0.01). The proportion of hatchery males, primarily age 3, increased from 38% to 49% over time. Conversely, the sex composition of wild fish did not exhibit a similar linear trend. Most hatchery-and wild-origin fish reached maturity at age 4 (!76%), followed in magnitude by ages 3 and 5. Wild mean age at maturation demonstrated no significant trend over time, while hatchery mean age at maturation declined (P ¼ 0.05). Mean lengths of 3-5-year-old hatchery fish were shorter than those of wild fish of the same age (differences of 2.7 cm for age 3, 1.7 cm for age 4, and 1.9 cm for age 5). Likewise, body weights of hatchery fish were lower than those of wild fish (differences of 0.3 kg for age 3, 0.3 kg for age 4, and 0.6 kg for age 5), representing a change in body size of between 0.5 and 1.0 standard deviation (SD). Median arrival timing of hatchery and wild fish at a broodstock collection site just downstream of ancestral spawning grounds showed no consistent difference. However, the median arrival date of age-3 fish was 19-20 d later than that for fish of ages 4 and 5 (P , 0.01). Mean spawn timing of hatchery fish was significantly earlier (5.1 d) than that of wild fish in a ''common-garden'' experiment (P , 0.05). We estimate that fitness could be reduced by as much as 1-5% for traits diverging from their optima by 0.5-1.0 SD. The degree of genetic determination of the divergence is unknown, but future monitoring will help clarify this. Perhaps the most important conclusion of our study is that even a hatchery program designed to minimize differences between hatchery and wild fish did not produce fish that were identical to wild fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.