Theoretically, individuals whose ancestors evolved in cold and/or dry climates should have greater nasal mucosal surface area relative to air volume of the nasal passages than individuals whose ancestors evolved in warm, humid climates. A high surface-area-to-volume (SA/V) ratio allows relatively more air to come in contact with the mucosa and facilitates more efficient heat and moisture exchange during inspiration and expiration, which would be adaptive in a cold, dry environment. Conversely, a low SA/V ratio is not as efficient at recapturing heat and moisture during expiration and allows for better heat dissipation, which would be adaptive in a warm, humid environment. To test this hypothesis, cross-sectional measurements of the nasal passages that reflect surface area and volume were collected from a sample of CT scans of patients of European and African ancestry. Results indicate that individuals of European descent do have higher SA/V ratios than individuals of African descent, but only when decongested. Otherwise, the two groups show little difference. This pattern of variation may be due to selection for different SA/V configurations during times of physical exertion, which has been shown to elicit decongestion. Relationships between linear measurements of the skeletal nasal aperture and cavity and cross-sectional dimensions were also examined. Contrary to predictions, the nasal index, the ratio of nasal breadth to nasal height, is not strongly correlated with internal dimensions. However, differences between the nasal indices of the two groups are highly significant. These results may be indicative of different adaptive solutions to the same problem.
To understand how variation in nasal architecture accommodates the need for effective conditioning of respired air, it is necessary to assess the morphological interaction between the nasal cavity and other aspects of the nasofacial skeleton. Previous studies indicate that the maxillary sinuses may play a key role in accommodating climatically induced nasal variation such that a decrease in nasal cavity volume is associated with a concomitant increase in maxillary sinus volume. However, due to conflicting results in previous studies, the precise interaction of the nasal cavity and maxillary sinuses, in humans, is unclear. This is likely due to the prior emphasis on nasal cavity size, whereas arguably, nasal cavity shape is more important with regard to the interaction with the maxillary sinuses. Using computed tomography scans of living human subjects (N540), the goal of this study is to assess the interaction between nasal cavity form and maxillary sinus volume in European-and African-derived individuals with differences in nasal cavity morphology. First, we assessed whether there is an inverse relationship between nasal cavity and maxillary sinus volumes. Next, we examined the relationship between maxillary sinus volume and nasal cavity shape using multivariate regression. Our results show that there is a positive relationship between nasal cavity and maxillary sinus volume, indicating that the maxillary sinuses do not accommodate variation in nasal cavity size. However, maxillary sinus volume is significantly correlated with variation in relative internal nasal breadth. Thus, the maxillary sinuses appear to be important for accommodating nasal cavity shape rather than size. Anat Rec, 296:414-426, 2013. V C 2013 Wiley Periodicals, Inc.Key words: climate; computed tomography; human variation; pneumatizationThe nasofacial skeleton displays a wide range of morphological variation among recent modern human populations. Variability in this region of the cranium has been largely assessed within the context of climatic adaptation (Thomson
Our study indicates that the internal nasal fossa exhibits a stronger association with climate compared to other aspects of the human nose. Further, our study supports suggestions that regional variation in internal nasal fossa morphology reflects demands for heat and moisture exchange via adjustment of internal nasal airway dimensions. Our study thus provides empirical support for theoretical assertions related to nasorespiratory function, with important implications for understanding human nasal evolution.
Researchers have hypothesized that nasal morphology, both in archaic Homo and in recent humans, is influenced by body mass and associated oxygen consumption demands required for tissue maintenance. Similarly, recent studies of the adult human nasal region have documented key differences in nasal form between males and females that are potentially linked to sexual dimorphism in body size, composition, and energetics. To better understand this potential developmental and functional dynamic, we first assessed sexual dimorphism in the nasal cavity in recent humans to determine when during ontogeny male-female differences in nasal cavity size appear. Next, we assessed whether there are significant differences in nasal/body size scaling relationships in males and females during ontogeny. Using a mixed longitudinal sample we collected cephalometric and anthropometric measurements from n = 20 males and n = 18 females from 3.0 to 20.0+ years of age totaling n = 290 observations. We found that males and females exhibit similar nasal size values early in ontogeny and that sexual dimorphism in nasal size appears during adolescence. Moreover, when scaled to body size, males exhibit greater positive allometry in nasal size compared to females. This differs from patterns of sexual dimorphism in overall facial size, which are already present in our earliest age groups. Sexually dimorphic differences in nasal development and scaling mirror patterns of ontogenetic variation in variables associated with oxygen consumption and tissue maintenance. This underscores the importance of considering broader systemic factors in craniofacial development and may have important implications for the study of patters craniofacial evolution in the genus Homo.
As a component of the chondrocranium, the nasal septum influences the anteroposterior dimensions of the facial skeleton. The role of the septum as a facial growth center, however, has been studied primarily in longsnouted mammals, and its precise influence on human facial growth is not as well understood. Whereas the nasal septum may be important in the anterior growth of the human facial skeleton early in ontogeny, the high incidence of nasal septal deviation in humans suggests the septum's influence on human facial length is limited to the early phases of facial growth. Nevertheless, the nasal septum follows a growth trajectory similar to the facial skeleton and, as such, its prolonged period of growth may influence other aspects of facial development. Using computed tomography scans of living human subjects (n = 70), the goal of the present study is to assess the morphological relationship between the nasal septum and facial skeleton in European-and African-derived populations, which have been shown to exhibit early developmental differences in the nasal septal-premaxillary complex. First we assessed whether there is population variation in the size of the nasal septum in European-and African-derived samples. This included an evaluation of septal deviation and the spatial constraints that influence variation in this condition. Next, we assessed the relationship between nasal septal size and craniofacial shape using multivariate regression techniques. Our results indicate that there is significant population variation in septal size and magnitude of septal deviation, both of which are greater in the European-derived sample. While septal deviation suggests a disjunction between the nasal septum and other components of the facial skeleton, we nevertheless found a significant relationship between the size of the nasal septum and craniofacial shape, which appears to largely be a response to the need to accommodate variation in nasal septal size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.