Assembly of DNA parts into DNA constructs is a foundational technology in the emerging field of synthetic biology. An efficient DNA assembly method is particularly important for high-throughput, automated DNA assembly in biofabrication facilities and therefore we investigated one-step, scarless DNA assembly via ligase cycling reaction (LCR). LCR assembly uses single-stranded bridging oligos complementary to the ends of neighboring DNA parts, a thermostable ligase to join DNA backbones, and multiple denaturation-annealing-ligation temperature cycles to assemble complex DNA constructs. The efficiency of LCR assembly was improved ca. 4-fold using designed optimization experiments and response surface methodology. Under these optimized conditions, LCR enabled one-step assembly of up to 20 DNA parts and up to 20 kb DNA constructs with very few single-nucleotide polymorphisms (<1 per 25 kb) and insertions/deletions (<1 per 50 kb). Experimental comparison of various sequence-independent DNA assembly methods showed that circular polymerase extension cloning (CPEC) and Gibson isothermal assembly did not enable assembly of more than four DNA parts with more than 50% of clones being correct. Yeast homologous recombination and LCR both enabled reliable assembly of up to 12 DNA parts with 60-100% of individual clones being correct, but LCR assembly provides a much faster and easier workflow than yeast homologous recombination. LCR combines reliable assembly of many DNA parts via a cheap, rapid, and convenient workflow and thereby outperforms existing DNA assembly methods. LCR assembly is expected to become the method of choice for both manual and automated high-throughput assembly of DNA parts into DNA constructs.
DNA ‘assembly’ from ‘building blocks’ remains a cornerstone in synthetic biology, whether it be for gene synthesis (∼1 kb), pathway engineering (∼10 kb) or synthetic genomes (>100 kb). Despite numerous advances in the techniques used for DNA assembly, verification of the assembly is still a necessity, which becomes cost-prohibitive and a logistical challenge with increasing scale. Here we describe for the first time a comprehensive, high-throughput solution for structural DNA assembly verification by restriction digest using exhaustive in silico enzyme screening, rolling circle amplification of plasmid DNA, capillary electrophoresis and automated digest pattern recognition. This low-cost and robust methodology has been successfully used to screen over 31 000 clones of DNA constructs at <$1 per sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.