We examined how variation in working memory (WM) capacity due to aging or individual differences among young adults is associated with intrinsic or resting-state anticorrelations, particularly between (1) the medial prefrontal cortex (MPFC), a component of the default-mode network (DMN) that typically decreases in activation during external, attention-demanding tasks, and (2) the dorsolateral prefrontal cortex (DLPFC), a component of the fronto-parietal control network that supports executive functions and WM and typically increases in activation during attention-demanding tasks. We compared the magnitudes of MPFC-DLPFC anticorrelations between healthy younger and older participants (Experiment 1) and related the magnitudes of these anticorrelations to individual differences on two behavioral measures of working memory capacity in two independent groups of young adults (Experiments 1 and 2). Relative to younger adults, older adults exhibited reductions in working memory capacity and in MPFC-DLPFC anticorrelations. Within younger adults, greater MPFC-DLPFC anticorrelation at rest correlated with greater working memory capacity. These findings show that variation in MPFC-DLPFC anticorrelations, whether related to aging or to individual differences, may reflect an intrinsic functional brain architecture supportive of working memory capacity.
While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain–behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders.
Fluid intelligence is important for successful functioning in the modern world, but much evidence suggests that fluid intelligence is largely immutable after childhood. Recently, however, researchers have reported gains in fluid intelligence after multiple sessions of adaptive working memory training in adults. The current study attempted to replicate and expand those results by administering a broad assessment of cognitive abilities and personality traits to young adults who underwent 20 sessions of an adaptive dual n-back working memory training program and comparing their post-training performance on those tests to a matched set of young adults who underwent 20 sessions of an adaptive attentional tracking program. Pre- and post-training measurements of fluid intelligence, standardized intelligence tests, speed of processing, reading skills, and other tests of working memory were assessed. Both training groups exhibited substantial and specific improvements on the trained tasks that persisted for at least 6 months post-training, but no transfer of improvement was observed to any of the non-trained measurements when compared to a third untrained group serving as a passive control. These findings fail to support the idea that adaptive working memory training in healthy young adults enhances working memory capacity in non-trained tasks, fluid intelligence, or other measures of cognitive abilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.