Complex electrical impedance and dielectric spectroscopy were applied to study the dielectric relaxations and their thermal behavior in ion-conducting composites/complexes from polymer poly(ethylene oxide) (PEO) and E8 nematic liquid crystals (LCs), at the compositional ratio PEO:E8 = 70:30 wt%. Flexible thin films of PEO/E8 with a thickness of 150 μm were inspected, as well as such films from Na+ ion-conducting electrolyte PEO/E8/NaIO4 with the same PEO:E8 compositional ratio, but additionally containing 10 wt.% from the salt sodium metaperiodate (NaIO4) as a dopant of Na+ ions. The molecular dynamics, namely the dielectric relaxation of PEO/E8 and PEO/E8/NaIO4, were characterized through analyses of complex impedance and dielectric spectra measured in the frequency range of 1 Hz–1 MHz, under variation of temperature from below to above the glass-transition temperature of these composites. The relaxation and polarization of dipole formations in PEO/E8 and PEO/E8/NaIO4 were evidenced and compared in terms of both electrical impedance and dielectric response depending on temperature. The results obtained for molecular organization, molecular relaxation dynamics, and electric polarization in the studied ion-conducting polymer/LC composites/complexes can be helpful in the optimization of their structure and performance, and are attractive for applications in flexible organic electronics, energy storage devices, and mechatronics.
The electrical conductivity of thin films (150 μm) of composites produced from polymer poly(ethylene oxide) (PEO) and nematic liquid crystals E8 (in compositional ratio PEO:E8 = 70:30 wt%) was studied by means of complex electrical impedance spectroscopy in the range from 1 Hz to 1 MHz. Both ion conductivity and alternating-current conductivity of PEO/E8 films were determined as depending on temperature in the room-temperature region 25–50◦C. The results show that the ion-conductive PEO/E8 composite is a promising material for electronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.