A stepwise approach for determining the model applicability domain is proposed. Four stages are applied to account for the diversity and complexity of the current SAR/QSAR models, reflecting their mechanistic rationality (including metabolic activation of chemicals) and transparency. General parametric requirements are imposed in the first stage, specifying in the domain only those chemicals that fall in the range of variation of the physicochemical properties of the chemicals in the training set. The second stage defines the structural similarity between chemicals that are correctly predicted by the model. The structural neighborhood of atom-centered fragments is used to determine this similarity. The third stage in defining the domain is based on a mechanistic understanding of the modeled phenomenon. Here, the model domain combines the reliability of specific reactive groups hypothesized to cause the effect and the domain of explanatory variables determining the parametric requirements in order for functional groups to elicit their reactivity. Finally, the reliability of simulated metabolism (metabolites, pathways, and maps) is taken into account in assessing the reliability of predictions, if metabolic activation of chemicals is a part of the (Q)SAR model. Some of the stages of the proposed approach for defining the model domain can be eliminated depending on the availability and quality of the experimental data used to derive the model, the specificity of (Q)SARs, and the goals of their ultimate application. The performance of the proposed definition of the model domain is tested using several examples of (Q)SARs that have been externally validated, including models for predicting acute toxicity, skin sensitization, and biodegradation. The results clearly showed that credibility in predictions of QSAR models for chemicals belonging to their domain is much higher than for chemicals outside this domain.
The OECD QSAR Toolbox is a software application intended to be used by governments, the chemical industry and other stakeholders in filling gaps in (eco)toxicity data needed for assessing the hazards of chemicals. The development and release of the Toolbox is a cornerstone in the computerization of hazard assessment, providing an 'all inclusive' tool for the application of category approaches, such as read-across and trend analysis, in a single software application, free of charge. The Toolbox incorporates theoretical knowledge, experimental data and computational tools from various sources into a logical workflow. The main steps of this workflow are substance identification, identification of relevant structural characteristics and potential toxic mechanisms of interaction (i.e. profiling), identification of other chemicals that have the same structural characteristics and/or mechanism (i.e. building a category), data collection for the chemicals in the category and use of the existing experimental data to fill the data gap(s). The description of the Toolbox workflow and its main functionalities is the scope of the present article.
The unprecedented pollution of the environment by xenobiotic compounds has provoked the need to understand the biodegradation potential of chemicals. Mechanistic understanding of microbial degradation is a premise for adequate modelling of the environmental fate of chemicals. The aim of the present paper is to describe abiotic and biotic models implemented in CATALOGIC software. A brief overview of the specificities of abiotic and microbial degradation is provided followed by detailed descriptions of models built in our laboratory during the last decade. These are principally new models based on unique mathematical formalism already described in the first paper of this series, which accounts more adequately than currently available approaches the multipathway metabolic logic in prokaryotes. Based on simulated pathways of degradation, the models are able to predict quantities of transformation products, biological oxygen demand (BOD), carbon dioxide (CO(2)) production, and primary and ultimate half-lives. Interpretation of the applicability domain of models is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.