A solution for the elastoplastic deflection of cantilever beams with linearly variable circular cross-section loaded by shear force at the free end, which is suitable for practical use, has not yet been developed. A semi-analytical solution for such a problem is proposed in this paper. The solution involves beams made of homogenous and isotropic materials with bilinear elastoplastic strain hardening behavior. The Bernoulli–Euler formula is used for determining the elastic deflection. However, for the plastic domain of material behavior, the differential equation of beam bending does not have a solution in closed form. Therefore, an incremental procedure for determining the curvature of the plastified region of the beam is suggested. Deflection of the cantilever beam is calculated via integration of the approximated function of the beam curvature. The proposed semi-analytical solution is validated using experimental results of the seismic energy dissipation device components which have been selected as a sample of a real engineering system. Also, validation is done via finite element analysis of six different cantilever beam models with varying geometric and material characteristics. A satisfying agreement between the proposed semi-analytical results and the subsequent experimental and numerical results is herein achieved, confirming its reliability.
The topic of this paper is experimental and numerical analysis of the impact strength of unreinforced concrete slabs. Impact strength of concrete is significant in case of some accidental loads during exploitation. Impact strength can be determined experimentally, using Drop-weight test, Charpy test, Projectile impact test, Explosive test, etc. In this research, a numerical model for determining the impact strength of concrete slabs based on Finite element method (FEM) and high-end engineering software has been proposed. Modelling approach to this problem was applying the Explicit dynamics FEM analysis. Thereat, two different existing material models for concrete were enforced: Concrete damage plasticity model – CDP (implemented in ABAQUS/Explicit software), and the Riedel-Hiermaier-Thoma model – RHT (implemented in ANSYS Workbench software). Analysis parameters for both material models, necessary as input data, have been determined through a series of FEM analyses and validated by performed experiments, using drop-weight test. Results of the numerical analyses have been compared with the experimental ones, as well as mutually. Advantages and drawbacks of both material models are highlighted, as well as the reliability of the proposed numerical models. The proposed numerical FE models, confirmed by experiments, can be successfully used for determining impact strength of concrete slabs in further research.
In the paper is presented experimental analysis of an original type of node joint for a steel space truss. The joint sample was loaded by spatial set of forces that simulate real condition of the structure with eight balanced member forces (4 chord and 4 diagonal members), up to structure failure. It was realized in a specially designed test facility. Tested node joint samples were made in real scale, according to the model originated after FE analysis and optimization. Basic idea was to construct and test a node joint that can be made in average technology conditions, without special tools and requirements. Besides, results of a stress-strain FE analysis are presented and comparison of the two analyses is given for the most critical regions of the node joint. Values of measured and calculated strains across model samples and characteristic measuring points are presented
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.