Tissue clearing methods enable imaging of intact biological specimens without sectioning. However, reliable and scalable analysis of such large imaging data in 3D remains a challenge. Towards this goal, we developed a deep learning-based framework to quantify and analyze the brain vasculature, named Vessel Segmentation & Analysis Pipeline (VesSAP). Our pipeline uses a fully convolutional network with a transfer learning approach for segmentation. We systematically analyzed vascular features of the whole brains including their length, bifurcation points and radius at the micrometer scale by registering them to the Allen mouse brain atlas. We reported the first evidence of secondary intracranial collateral vascularization in CD1-Elite mice and found reduced vascularization in the brainstem as compared to the cerebrum. VesSAP thus enables unbiased and scalable quantifications for the angioarchitecture of the cleared intact mouse brain and yields new biological insights related to the vascular brain function.
SUMMARYSpatial molecular profiling of complex tissues is essential to investigate cellular function in physiological and pathological states. However, methods for molecular analysis of biological specimens imaged in 3D as a whole are lacking. Here, we present DISCO-MS, a technology combining whole-organ imaging, deep learning-based image analysis, and ultra-high sensitivity mass spectrometry. DISCO-MS yielded qualitative and quantitative proteomics data indistinguishable from uncleared samples in both rodent and human tissues. Using DISCO-MS, we investigated microglia activation locally along axonal tracts after brain injury and revealed known and novel biomarkers. Furthermore, we identified initial individual amyloid-beta plaques in the brains of a young familial Alzheimer’s disease mouse model, characterized the core proteome of these aggregates, and highlighted their compositional heterogeneity. Thus, DISCO-MS enables quantitative, unbiased proteome analysis of target tissues following unbiased imaging of entire organs, providing new diagnostic and therapeutic opportunities for complex diseases, including neurodegeneration.Graphical AbstractHighlightsDISCO-MS combines tissue clearing, whole-organ imaging, deep learning-based image analysis, and ultra-high sensitivity mass spectrometryDISCO-MS yielded qualitative and quantitative proteomics data indistinguishable from fresh tissuesDISCO-MS enables identification of rare pathological regions & their subsequent molecular analysisDISCO-MS revealed core proteome of plaques in 6 weeks old Alzheimer‘s disease mouse model Supplementary Video can be seen at: http://discotechnologies.org/DISCO-MS/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.