As a result of city, industrial and agricultural activities, a large amount of wastewater is generated every year. The wastewater generated must be treated. When the nitrogen concentration in wastewater reaches more than 1.9 mg/L, favorable environmental conditions are provided for the microalgae to multiply. In the presence of microalgae in wastewater treatment technologies, treatment has gained importance in recent years and has become a more environmentally-friendly alternative in treatment. Research on the availability of biomass as a source of raw materials in the production of alternative energy sources is increasingly important. In this paper, Chlorella variabilis microalgae growth, lipid productivity and nutrient removal in wastewater media were investigated. Before the inoculation of microalgae, wastewater was centrifuged at 4000 rpm to remove the solid particles and was diluted with tap water in different ratios (0-40%). Wastewaters were inoculated with Chlorella variabilis in 250 mL open flasks in a 200 rpm shaking incubator for a month at 27 °C. After incubation maximum cell concentration (Xmax=1.03 gdw/L), growth rate (µmax=4.0 x10-3 h-1), and doubling time (173 h) of the microalgae were reached in 40% diluted medium. Fat content (21%) and lipid productivity (6x10-3 g/L.d) were determined concurrently for 20% diluted media. It was determined that microalgae lipids were rich in oleic (C18:1, 38%) and linolenic acid (C18:3, 35%). The efficiency of COD (Chemical oxygen demand) and total phosphor removal in the presence of microalgae had been almost 60% and 77% respectively. According to the experimental results, the treatment of wastewater in the presence of microalgae is promising for future applications.
The purpose of this study is to investigate the effect of surface modification of volcanic ash particles on dynamic mechanical properties of volcanic ash filled polyphenylene sulfide (PPS) composites. For this purpose volcanic ash particles were modified with 1, 3, 5 vol.% of 3-aminopropyltriethoxysilane (3-APTS) which has an organic functional group. All volcanic ash/PPS composite samples were prepared by using DSM Xplore 15 ml twin screw microcompounder and DSM Xplore 12 ml injection molding machines. The content of volcanic ash in composite samples was varied as 10 and 15 wt%. Volcanic ash filler dispersion and adhesion between volcanic ash particles and PPS matrix were examined by scanning electron microscopy. Dynamic mechanical properties such as storage modulus (E ) and glass transition temperature (Tg) were investigated by TA Instruments Q800 dynamic mechanical analyzer. During the experiments, the relation between silane coupling and dynamic mechanical properties was evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.