Commercial-vehicle manufacturers design vehicles to operate over a wide range of transportation tasks and driving cycles. However, certain possibilities of reducing emissions, manufacturing and operational costs from end vehicles are neglected if the target range of transportation tasks is narrow and known in advance, especially in case of electrified propulsion. Apart from real-time energy optimization, vehicle hardware can be meticulously tailored to best fit a known transportation task. As proposed in this study, a heterogeneous fleet of heavy-vehicles can be designed in a more cost- and energy-efficient manner, if the coupling between vehicle hardware, transportation mission, and infrastructure is considered during initial conceptual-design stages. To this end, a rather large optimization problem was defined and solved to minimize the total cost of fleet ownership in an integrated manner for a real-world case study. In the said case-study, design variables of optimization problem included mission, recharging infrastructure, loading–unloading scheme, number of vehicles of each type, number of trips, vehicle-loading capacity, selection between conventional, fully electric, and hybrid powertrains, size of internal-combustion engines and electric motors, number of axles being powered, and type and size of battery packs. This study demonstrated that by means of integrated fleet customization, battery-electric heavy-vehicles could strongly compete against their conventional combustion-powered counterparts. The primary focus has been put on optimizing vehicle propulsion, transport mission, infrastructure and fleet size rather than routing.
A generic framework for mechanical modeling of objects that collide and have contact is presented. It can be used in combination with the Modelica MultiBody library and to model granular objects using DEM (Discrete Element Method). The shapes of the objects are given by general triangular meshes.
With the objective of reducing fuel consumption, this paper presents real-time predictive energy management of hybrid electric heavy vehicles. We propose an optimal control strategy that determines the power split between different vehicle power sources and brakes. Based on model predictive control (MPC) and sequential programming, the optimal trajectories of the vehicle velocity and battery state of charge are found for upcoming horizons with a length of 5-20 km. Then, acceleration and brake pedal positions together with the battery usage are regulated to follow the requested speed and state of charge, which is verified using a high-fidelity vehicle plant model. The main contribution of this paper is the development of a sequential linear program for predictive energy management that is faster and simpler than sequential quadratic programming in tested solvers and provides trajectories that are very close to the best trajectories found by nonlinear programming. The performance of the method is also compared to that of two different sequential quadratic programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.