SummaryNowadays, software‐defined networking (SDN) is regarded as the best solution for the centralized handling and monitoring of large networks. However, it should be noted that SDN architecture suffers from the same security issues, which are the case with common networks. As a case in point, one of the shortcomings of SDNs is related to its high vulnerability to distributed denial of service (DDoS) attacks and other similar ones. Indeed, anomaly detection systems have been considered to deal with these attacks. The challenges are related to designing these systems including gathering data, extracting effective features, and selecting the best model for anomaly detection. In this paper, a novel combined approach is proposed; this method uses NetFlow protocol for gathering information and generating dataset, information gain ratio (IGR), in order to select the effective and relevant features and ensemble learning scheme (Stacking) for developing a structure with desirable performance and efficiency for detecting anomaly in SDN environment. The results obtained from the experiments revealed that the proposed method performs better than other methods in terms of enhancing accuracy (AC) and detection rate (DR) and reducing classification error (CE) and false alarm rate (FAR). The AC, DR, CE, and FAR of the proposed model were measured as 99.92%, 99.83%, 0.08%, and 0.03%, respectively. Furthermore, the proposed method prevents the occurrence of excessive overload on the controller and OpenFlow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.