A scanning stereo particle image velocimetry (SSPIV) system was developed to measure the three-dimensional (3D) distribution of three-component (3C) velocity in a turbulent round jet. A laser light sheet produced with a high-repetition-rate pulsed Nd:YLF laser was scanned by an optical scanner in a direction normal to the sheet. Two high-speed mega-pixel resolution C-MOS cameras captured the particle images illuminated by the light sheet, and the stereoscopic PIV method was adopted to acquire the 3D-3C velocity distribution of turbulent water flow. A water jet formed by a round nozzle with an exit diameter of D = 5 mm was diagnosed by the current technique. The jet Reynolds number was set at Re ≈ 1000, and the streamwise location of the measurement was fixed at approximately x = 45D. A measurement volume (∼100 × 100 × 100 mm 3 ) containing 50 velocity planes was scanned in 0.22 s, which was sufficiently short to capture the instantaneous vortical structures. The residue of the continuity equation (divergence) was approximately 7% of rms vorticity on the centreline of the jet. The iso-vorticity surfaces clearly depict vortical structures in the jet shear layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.