Mutational activation of the Ras oncogene products (H-Ras, K-Ras, and N-Ras) is frequently observed in human cancers, making them promising anticancer drug targets. Nonetheless, no effective strategy has been available for the development of Ras inhibitors, partly owing to the absence of well-defined surface pockets suitable for drug binding. Only recently, such pockets have been found in the crystal structures of a unique conformation of Ras⋅GTP. Here we report the successful development of small-molecule Ras inhibitors by an
in silico
screen targeting a pocket found in the crystal structure of M-Ras⋅GTP carrying an H-Ras–type substitution P40D. The selected compound Kobe0065 and its analog Kobe2602 exhibit inhibitory activity toward H-Ras⋅GTP-c-Raf-1 binding both in vivo and in vitro. They effectively inhibit both anchorage-dependent and -independent growth and induce apoptosis of H-
ras
G12V
–transformed NIH 3T3 cells, which is accompanied by down-regulation of downstream molecules such as MEK/ERK, Akt, and RalA as well as an upstream molecule, Son of sevenless. Moreover, they exhibit antitumor activity on a xenograft of human colon carcinoma SW480 cells carrying the
K-ras
G12V
gene by oral administration. The NMR structure of a complex of the compound with H-Ras⋅GTP
T35S
, exclusively adopting the unique conformation, confirms its insertion into one of the surface pockets and provides a molecular basis for binding inhibition toward multiple Ras⋅GTP-interacting molecules. This study proves the effectiveness of our strategy for structure-based drug design to target Ras⋅GTP, and the resulting Kobe0065-family compounds may serve as a scaffold for the development of Ras inhibitors with higher potency and specificity.
We have cloned CYR1, the S. cerevisiae gene encoding adenylate cyclase. The DNA sequence of CYR1 can encode a protein of 2026 amino acids. This protein would contain a central region comprised of over twenty copies of a 23 amino acid repeating unit with remarkable homology to a 24 amino acid tandem repeating unit of a trace human serum glycoprotein. Gene disruption and biochemical experiments indicate that the catalytic domain of adenylate cyclase resides in the carboxyl terminal 400 amino acids. Elevated expression of adenylate cyclase suppresses the lethality that otherwise results from loss of RAS gene function in yeast. Yeast adenylate cyclase, made in E. coli, cannot be activated by added RAS protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.