Hadal oceans at water depths below 6,000 m are the least-explored aquatic biosphere. The Challenger Deep, located in the western equatorial Pacific, with a water depth of ∼11 km, is the deepest ocean on Earth. Microbial communities associated with waters from the sea surface to the trench bottom (0 ∼10,257 m) in the Challenger Deep were analyzed, and unprecedented trench microbial communities were identified in the hadal waters (6,000 ∼10,257 m) that were distinct from the abyssal microbial communities. The potentially chemolithotrophic populations were less abundant in the hadal water than those in the upper abyssal waters. The emerging members of chemolithotrophic nitrifiers in the hadal water that likely adapt to the higher flux of electron donors were also different from those in the abyssal waters that adapt to the lower flux of electron donors. Species-level niche separation in most of the dominant taxa was also found between the hadal and abyssal microbial communities. Considering the geomorphology and the isolated hydrotopographical nature of the Mariana Trench, we hypothesized that the distinct hadal microbial ecosystem was driven by the endogenous recycling of organic matter in the hadal waters associated with the trench geomorphology.hadal | trench | niche separation | nitrification | Challenger Deep
Erythromycin and other macrolides are effective for the treatment of chronic inflammatory airway diseases such as diffuse panbronchiolitis (DPB) and chronic sinusitis. The effect of macrolides in DPB is suggested to be anti-inflammatory rather than antibacterial. We investigated the effects of clarithromycin on interleukin-8 (IL-8) production using human peripheral monocytes and the human monocytic leukaemia cell line, THP-1. Bacterial extracts from Escherichia coli, Pseudomonas aeruginosa and Helicobacter pylori, as well as E. coli-derived lipopolysaccharide (LPS), induced IL-8 production. Clarithromycin suppressed this production in a dose-dependent manner in both monocytes and THP-1 cells (49.3-75.0% inhibition at 10 mg/L). A luciferase reporter gene assay with plasmids containing a serially deleted IL-8 promoter fragment showed that both the activator protein-1 (AP-1) and/or the nuclear factor-kappa B (NF-kapp aB) binding sequences were responsible for the LPS and clarithromycin responsiveness of the IL-8 promoter. Consistently, in an electromobility shift assay, LPS increased the specific binding of both AP-1 and NF-kappaB, whereas clarithromycin suppressed it. Moreover, LPS and clarithromycin regulated three other promoters that have either the NF-kappa B or the AP-1 binding sequences: two synthetic (pAP-1-Luc and pNF-kappa B-Luc) and one naturally occurring (ELAM-Luc). Our results indicate that clarithromycin modified inflammation by sup-pressing IL-8 production and that clarithromycin may affect the expression of other genes through AP-1 and NF-kappa B. In addition to treatment of airway diseases, the anti-inflammatory effect of macrolides may be beneficial for the treatment of other inflammatory diseases such as chronic gastritis caused by H. pylori.
There has been much progress in understanding the nitrogen cycle in oceanic waters including the recent identification of ammonia-oxidizing archaea and anaerobic ammonia oxidizing (anammox) bacteria, and in the comprehensive estimation in abundance and activity of these microbial populations. However, compared with the nitrogen cycle in oceanic waters, there are fewer studies concerning the oceanic benthic nitrogen cycle. To further elucidate the dynamic nitrogen cycle in deep-sea sediments, a sediment core obtained from the Ogasawara Trench at a water depth of 9760 m was analysed in this study. The profiles obtained for the pore-water chemistry, and nitrogen and oxygen stable isotopic compositions of pore-water nitrate in the hadopelagic sediments could not be explained by the depth segregation of nitrifiers and nitrate reducers, suggesting the co-occurrence of nitrification and nitrate reduction in the shallowest nitrate reduction zone. The abundance of SSU rRNA and functional genes related to nitrification and denitrification are consistent with the co-occurrence of nitrification and nitrate reduction observed in the geochemical analyses. This study presents the first example of cooperation between aerobic and anaerobic nitrogen metabolism in the deep-sea sedimentary environments.
Antibacterial proteins are important participants in the innate immunity system. Elafin and SLPI are the whey acidic protein (WAP) motif proteins with both antibacterial activity and antiprotease activity, and their role in innate immunity is under intense investigation. We cloned two novel antibacterial WAP motif proteins from mice, SWAM1 and SWAM2. SWAM1 and SWAM2 are composed of a signal sequence and a single WAP motif that has high homologies with the WAP motifs of elafin and SLPI. SWAM1 is constitutively expressed in kidney and epididymis, and is induced in the pneumonic lung. SWAM2 is constitutively expressed in tongue. SWAM1 and SWAM2 inhibit the growth of both Escherichia coli and Staphylococcus aureus at a IC90 (concentration that achieves 90% inhibition) of 10 μM. Human genes LOC149709 and huWAP2 are considered to be human SWAM1 and SWAM2, respectively. These and several WAP motif proteins (WAP1, elafin, SLPI, HE4, eppin, C20orf170, LOC164237, and WFDC3) form a gene cluster on human chromosome 20, suggesting that they may be derived from the same ancestral gene by gene duplication. Our results underscore the role of the WAP motif as a skeletal motif to form antibacterial proteins, and warrant the study of antibacterial activity in other WAP motif proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.