Normal human cells undergo a limited number of divisions in culture and enter a non-dividing state called replicative senescence. Senescence is accompanied by several changes, including an increase in inhibitors of cyclin-dependent kinases and telomere shortening. The mechanisms by which viral oncogenes reverse these processes are not fully understood, although a general requirement for oncoproteins such as human papillomavirus E6 and E7 has suggested that the p53 and Rb pathways are targeted. Expression of the catalytic component of telomerase, hTERT, alone significantly extends the lifespan of human fibroblasts. Here we show that telomerase activity is not sufficient for immortalization of human keratinocyte or mammary epithelial cells: we find that neither addition of hTERT nor induction of telomerase activity by E6, both of which are active in maintaining telomere length, results in immortalization. Inactivation of the Rb/p16 pathway by E7 or downregulation of p16 expression, in combination with telomerase activity, however, is able to immortalize epithelial cells efficiently. Elimination of p53 and of the DNA-damage-induced G1 checkpoint is not necessary for immortalization, neither is elimination of p19ARF.
Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder caused by mutations in the cohesin-loading protein NIPBL1,2 for nearly 60% of individuals with classical CdLS3-5 and in the core cohesin components SMC1A (~5%) and SMC3 (<1%) for a smaller fraction of probands6,7. In humans, the multi-subunit complex cohesin is comprised of SMC1, SMC3, RAD21 and a STAG protein to form a ring structure proposed to encircle sister chromatids to mediate sister chromatid cohesion (SCC)8 as well as play key roles in gene regulation9. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin10-13 and in yeast, HOS1, a class I histone deacetylase, deacetylates SMC3 during anaphase14-16. Here we report the identification of HDAC8 as the vertebrate SMC3 deacetylase as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation (SMC3-ac) and inefficient dissolution of the “used” cohesin complex released from chromatin in both prophase and anaphase. While SMC3 with retained acetylation is loaded onto chromatin, ChIP-Seq analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations.
In the majority of cervical cancers, DNAs of high-risk mucosotpropic human papillomaviruses (HPVs), such as type 16, are maintained so as to express two viral proteins, E6 and E7, suggesting an essential importance to carcinogenesis. The high-risk HPV E6 proteins are known to inactivate p53 tumor suppressor protein but appear to have an additional, molecularly unknown function(s). In this study, we demonstrate that these E6 proteins can bind to the second PDZ domain of the human homologue of the Drosophila discs large tumor suppressor protein (hDLG) through their Cterminal XS͞TXV͞L (where X represents any amino acid, S͞T serine or threonine, and V͞L valine or leucine) motif. This finding is similar to the interaction between the adenomatous polyposis coli gene product and hDLG. E6 mutants losing the ability to bind to hDLG are no longer able to induce E6-dependent transformation of rodent cells. These results suggest an intriguing possibility that interaction between the E6 protein and hDLG or other PDZ domain-containing proteins could be an underlying mechanism in the development of HPV-associated cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.