Variations in molecular electronic structures related to conformational change are exceedingly attractive because of their key role in the understanding and development of functional processes in molecular electronics and biology. We observed, for the first time, the novel phase switching of a photoactive isomeric molecule, N-(2-mercaptoethyl)-4-phenylazobenzamide (Azo molecule) at a single-molecule level, which exhibits a distinctive change in the conductive characteristic under scanning tunneling microscope (STM) measurement. In comparison with the results obtained by the measurement of photoactive isomerization of the isolated Azo molecule, which was performed also for the first time, the observed characteristics are attributed to the results of the trans and cis phase transformation of the Azo molecule, under the condition of an external electric field and current flow. A specific point is that the potential landscape of the system is controllable by the electric field and provides a conformational stability with asymmetric bias dependence resulting in rectification.
The subionospheric VLF/LF propagation is extensively used to investigate the lower ionospheric perturbation in possible association with earthquakes. An extensive period of data over 7 yr from January 2001 to December 2007 and a combination of different propagation paths in and around Japan are used to examine the statistical correlation between the VLF/LF propagation anomaly (average nighttime amplitude, dispersion, and nighttime fluctuation) and earthquakes with magnitude >6.0. It is then found that the propagation anomaly exceeding the 2σ (standard deviation) criterion indicating the presence of ionospheric perturbation is significantly correlated with earthquakes with shallow depth (<40 km). Finally, the mechanism of seismoionospheric perturbations is discussed.
Prussian blue is a historical pigment synthesized for the first time at the beginning of 18th century. Here we demonstrate that the historical pigment exhibits surprising adsorption properties of gaseous ammonia. Prussian blue shows 12.5 mmol/g of ammonia capacity at 0.1 MPa, whereas standard ammonia adsorbents show only 5.08-11.3 mmol/g. Dense adsorption was also observed for trace contamination in atmosphere. Results also show higher adsorption by Prussian blue analogues with the optimization of chemical composition. The respective capacities of cobalt hexacyanocobaltate (CoHCC) and copper hexacyanoferrate (CuHCF) were raised to 21.9 and 20.2 mmol/g, the highest value among the recyclable adsorbents. Also, CoHCC showed repeated adsorption in vacuum. CuHCF showed regeneration by acid washing. The chemical state of the adsorbed ammonia depends on the presence of the water in atmosphere: NH3, which was stored as in the dehydrated case, was converted into NH4(+) in the hydrated case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.