Stem cells from human exfoliated deciduous teeth (SHEDs) can regenerate various tissues. We investigated the impact of SHED-conditioned medium (SHED-CM) on myocardial injury in a mouse model of ischemia-reperfusion (I/R). Wild-type (WT) mice were subjected to myocardial ischemia followed by reperfusion. SHED-CM was intravenously injected at 5 min after reperfusion. Administration of SHED-CM reduced myocardial infarct size as well as decreased apoptosis and inflammatory cytokine levels, such as TNF-α, IL-6, and IL-β, in the myocardium following I/R. In cultured cardiac myocytes, SHED-CM significantly suppressed apoptosis under hypoxia/serum-deprivation and reduced LPS-induced expression of pro-inflammatory genes. Furthermore, anti-apoptotic action of SHED-CM was stronger than bone marrow-derived stem cell (BMSC)-CM or adipose-derived stem cell (ADSC)-CM in cardiac myocytes. SHED-CM contains a higher concentration of hepatocyte growth factor (HGF) than BMSC-CM and ADSC-CM, and neutralization of HGF attenuated the inhibitory actions of SHED-CM on apoptosis in cardiac myocytes. Finally, WT mice were intravenously treated with an HGF-depleted SHED-CM, followed by myocardial I/R. HGF depletion significantly attenuated the inhibitory actions of SHED-CM on myocardial infarct size and apoptosis after I/R. SHED-CM protects the heart from acute ischemic injury because it suppresses inflammation and apoptosis. SHED-CM could be a useful treatment option for acute myocardial infarction.
ADRC sheets created by this Mag-TE method protect the heart against pathological cardiac remodeling. Our ADRC sheets have the potential to be a novel regenerative strategy for ischemic heart disease.
Angiogenic cell therapy represents a novel strategy for ischemic diseases, but some patients show poor responses. We investigated the therapeutic potential of an induced pluripotent stem (iPS) cell sheet created by a novel magnetite tissue engineering technology (Mag-TE) for reparative angiogenesis. Mouse iPS cell-derived Flk-1+ cells were incubated with magnetic nanoparticle-containing liposomes (MCLs). MCL-labeled Flk-1+ cells were mixed with diluted extracellular matrix (ECM) precursor and a magnet was placed on the reverse side. Magnetized Flk-1+ cells formed multi-layered cell sheets according to magnetic force. Implantation of the Flk-1+ cell sheet accelerated revascularization of ischemic hindlimbs relative to the contralateral limbs in nude mice as measured by laser Doppler blood flow and capillary density analyses. The Flk-1+ cell sheet also increased the expressions of VEGF and bFGF in ischemic tissue. iPS cell-derived Flk-1+ cell sheets created by this novel Mag-TE method represent a promising new modality for therapeutic angiogenesis.
Background: DPP-4 inhibitors exert pleiotropic effects that modulate cardiovascular disease. Results: The DPP-4 inhibitor vildagliptin stimulates ischemia-induced revascularization through eNOS signaling. The angiogenic actions of vildagliptin are mediated by both GLP-1-dependent and -independent mechanisms. Conclusion: DPP-4 inhibitor promotes endothelial cell function via eNOS signaling. Significance: DPP-4 inhibitor could be beneficial in patients with diabetes-related vascular complications.
The protective effect of a novel synthetic zinc-carnosine chelate compound, zinc N-(3-aminopropionyl)-L-histidine (Z-103), on the gastric mucosal injury induced by ischemia-reperfusion was studied in rats. Ischemia and reperfusion injury was produced on the rat stomach by applying a small clamp to the celiac artery for 30 min and by removal of the clamp for 30 min. The decrease in the gastric mucosal blood flow was not influenced by the treatment with Z-103. The increase in total area of the erosions on the stomach after ischemia-reperfusion and the increase in lipid peroxides in the gastric mucosa were significantly inhibited by the oral administration of Z-103. In addition, Z-103 inhibited lipid peroxidation of rat brain homogenate and liver microsome in vitro. These results suggest that the protective effect of Z-103 against the aggravation of gastric mucosal injury induced by ischemia-reperfusion may be due to its inhibitory effect on lipid peroxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.