The application of wire arc additive manufacturing (WAAM) in manufacturing has raised interest among researchers. In this paper, the introduction of additive manufacturing and wire arc additive manufacturing, various heat resources for WAAM, aluminium alloys, aluminium alloys ER4043, and performance evaluation of WAAM of ER4043 have been discussed in detail based on bead geometry, microstructure, microhardness, and tensile properties as well as the building path strategies, problems, and future directions. Based on this review, aluminium alloy 4043 (ER4043) is an Al-Si alloy frequently employed as a filler wire because it has superior fluidity and significantly fewer flaws in additively built structures. Next, dwell time and cooling efficiency during the WAAM process significantly affect bead geometry. Besides, a finer microstructure can be obtained with a better cooling rate. However, a coarser microstructure is obtained along with the increased deposition height due to heat accumulation and low solidification rate. Heat input is identified as the main cause of porosity, and CMT with a lower heat input is preferable and outperformed GTAW and GMAW in terms of mechanical properties.
The cold spray or Supersonic Particle Deposition technique has great potential for producing ceramic nanostructured coatings. This technique operates at a processing temperature that is low enough to preserve the initial feedstock materials’ microstructure. Nevertheless, depositing ceramic powders using a cold spray can be challenging because of the materials’ brittle nature. The interaction between substrate and particles is significantly influenced by substrate attributes, including hardness, material nature, degree of oxidation and temperature. In this study, the effect of the substrate’s remaining oxide composition on the adhesion strength of an agglomerated nano-TiO2 coating was investigated. The results showed that the coating adhesion strength increased for hard materials such as stainless steel and pure chromium as the annealed substrate temperature also increased from room temperature to 700 °C, indicating thicker oxide on the substrate surface. TiO2 particles mainly bond with SUS304 substrates through oxide bonding, which results from a chemical reaction involving TiO2-OH−. Chromium oxide (Cr2O3) is thermodynamically preferred in SUS304 and provides the OH− component required for the reaction. SUS304 shows a thermodynamic preference for chromium oxide (Cr2O3), and this enables Cr2O3 to provide the necessary OH− component for the reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.