Compared with standard monitoring practices, use of an auditory evoked potential or bispectral index monitor to titrate the volatile anesthetic led to a significant reduction in the anesthetic requirement. The anesthetic-sparing effect of cerebral monitoring resulted in a shorter postanesthesia care unit stay and improved quality of recovery from the patient's perspective.
Deoxycholic acid (DCA) is a secondary bile acid implicated in various cancers of the gastrointestinal (GI) tract. In oesophageal adenocarcinoma, DCA is believed to contribute to carcinogenesis during reflux where stomach contents enter the lower oesophagus. It is imperative that we understand the mechanisms whereby oesophageal carcinogens function in order that therapeutic options may be developed. We have previously shown that DCA can damage chromosomes and does so through its generation of reactive oxygen species (ROS). We show here, after detailed experiments, that DCA appears to have a non-linear dose response for DNA damage. DCA induces DNA damage (as measured by the micronucleus assay) at doses of 100 microM and higher in oesophageal OE33 cells, but fails to induce such DNA damage below this cut-off dose. We also show that in terms of NF-kappaB activation (as measured by up-regulation of two NF-kappaB target genes) by DCA, a similar dose response is observed. This dose-response data may be important clinically as DCA exposure to the oesophagus may be used as a way to identify the 10% of Barrett's oesophagus patients currently progressing to cancer from the 90% of patients who do not progress. Only quantitative studies measuring DCA concentrations in refluxates correlated with histological progression will answer this question. We further show here that ROS are behind DCAs ability to activate NF-kappaB as antioxidants (epigallocatechin gallate, resveratrol and vitamin C) abrogate DCAs ability to up-regulate NF-kappaB-controlled genes. In conclusion, low doses of DCA appear to be less biologically significant in vitro. If this were to be confirmed in vivo, it might suggest that reflux patients with low DCA concentrations may be at a lower risk of cancer progression compared to patients with high levels of DCA in their refluxate. Either way, antioxidant supplementation may possibly help prevent the deleterious effects of DCA in the whole GI tract.
A multimodal approach to minimizing postoperative side effects led to a reduced recovery room and hospital stay, as well as better pain control and patient satisfaction after laparoscopic nephrectomy.
We hypothesized that differences among individuals in reflux-induced oxidant production by esophageal squamous epithelial cells might contribute to the development of Barrett's esophagus. We studied the effects of acid and bile acids on the production of reactive oxygen species (ROS) in esophageal squamous cell lines derived from gastroesophageal reflux disease patients with (NES-B3T) and without (NES-G2T) Barrett's esophagus and in a Barrett's epithelial cell line (BAR-T). Cells were incubated with an ROS-sensitive probe and exposed to acidic medium, neutral bile acid medium, or acidic bile acid medium. ROS were quantified in the presence and absence of diphenyleneiodonium chloride (DPI, an NADPH oxidase inhibitor), N(G)-monomethyl-l-arginine (l-NMMA, a nitric oxide synthase inhibitor), and rotenone (a mitochondrial electron transport chain inhibitor). Acidic bile acid medium induced ROS production in both squamous cell lines; however, only DPI blocked ROS production by NES-B3T cells, whereas both DPI and l-NMMA blocked ROS production by NES-G2T cells. In BAR-T cells, acidic medium and acidic bile acid medium induced the production of ROS; l-NMMA prevented ROS production after exposure to acidic medium, whereas ROS production induced by acidic bile acid medium was blocked by DPI. These studies demonstrate that there are differences between esophageal squamous cells and Barrett's epithelial cells and between esophageal squamous cells from gastroesophageal reflux disease patients with and without Barrett's esophagus in the mechanisms of oxidant production induced by exposure to acid and bile acids.
Objectives. This open-label trial assessed the efficacy and safety of rifaximin as first-line therapy in hospitalized patients with Clostridium difficile-associated diarrhea (CDAD). Methods. We enrolled thirteen patients who had a confirmed diagnosis of CDAD characterized by ≥3 unformed stools/day and positive C. difficile toxin assay. Those patients received rifaximin 400 mg three times daily for 10 days. Resolution of symptoms, repeat assay 10 days after treatment, and followup for recurrence were assessed. Results. Eight patients completed the study, and all reported symptom resolution during treatment. Mean time to last unformed stool was 132 h ± 42.5 h. Seven patients had no relapse by week 2 and in longer followup (median 162 days). One patient had recurrent CDAD during a repeat hospitalization. Conclusions. Rifaximin was effective and safe as first-line treatment for CDAD and did not result in recurrence in most patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.