Superparamagnetic iron oxide nanoparticles (SPION) are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cytotoxicity, the most commonly used determinant of toxicity as a result of exposure to SPION, this review also mentions the importance of studying the subtle cellular alterations in the form of DNA damage and oxidative stress. We review current studies and discuss how SPION, with or without different surface coating, may cause cellular perturbations including modulation of actin cytoskeleton, alteration in gene expression profiles, disturbance in iron homeostasis and altered cellular responses such as activation of signalling pathways and impairment of cell cycle regulation. The importance of protein-SPION interaction and various safety considerations relating to SPION exposure are also addressed.
Highlights► We consider current in vitro OECD genotoxicity tests for nanomaterials. ► Ames test does not appear to be suitable for nanomaterial assessment. ► In vitro HPRT and micronucleus assays require nanomaterial specific protocols. ► We recommend a strategic in vitro genotoxicity testing strategy for nanomaterials.
The development of novel nanomaterials with unique physico-chemical properties is increasing at a rapid rate, with potential applications across a broad range of manufacturing industries and consumer products. Nanomaterial safety is therefore becoming an increasingly contentious issue that has intensified over the past 4 years, and in response, a steady stream of studies focusing on nanotoxicology are emerging. However, it is becoming increasingly evident that nanomaterials cannot be treated in the same manner as chemical compounds with regards to their safety assessment, as their unique physico-chemical properties are also responsible for unexpected interactions with experimental components that generate misleading data-sets. In this report, we focus on nanomaterial interactions with colorimetric and fluorometric dyes, components of cell culture growth medium and genotoxicity assay components, and the resultant consequences on test systems are demonstrated. Thus, highlighting some of the potential confounding factors that need to be considered in order to ensure that in vitro genotoxicity assays report true biological impacts in response to nanomaterial exposure.
A mechanistic understanding of carcinogenic genotoxicity is necessary to determine consequences of chemical exposure on human populations and improve health risk assessments. Currently, linear dose-responses are assumed for DNA reactive compounds, ignoring cytoprotective processes that may limit permanent damage. To investigate the biological significance of low-dose exposures, human lymphoblastoid cells were treated with alkylating agents that have different mechanisms of action and DNA targets: methylmethane sulfonate (MMS), methylnitrosourea (MNU), ethylmethane sulfonate (EMS), and ethylnitrosourea (ENU). Chromosomal damage and point mutations were quantified with the micronucleus and hypoxanthine phosphoribosyltransferase forward mutation assays. MNU and ENU showed linear dose-responses, whereas MMS and EMS had nonlinear curves containing a range of nonmutagenic low doses. The lowest observed effect level for induction of chromosomal aberrations was 0.85 Mg/mL MMS and 1.40 Mg/mL EMS; point mutations required 1.25 Mg/mL MMS and 1.40 Mg/mL EMS before a mutagenic effect was detected. This nonlinearity could be due to homeostatic maintenance by DNA repair, which is efficient at low doses of compounds that primarily alkylate N 7 -G and rarely attack O atoms. A pragmatic threshold for carcinogenicity may therefore exist for such genotoxins. [Cancer Res 2007;67(8):3904-11]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.