The development of novel nanomaterials with unique physico-chemical properties is increasing at a rapid rate, with potential applications across a broad range of manufacturing industries and consumer products. Nanomaterial safety is therefore becoming an increasingly contentious issue that has intensified over the past 4 years, and in response, a steady stream of studies focusing on nanotoxicology are emerging. However, it is becoming increasingly evident that nanomaterials cannot be treated in the same manner as chemical compounds with regards to their safety assessment, as their unique physico-chemical properties are also responsible for unexpected interactions with experimental components that generate misleading data-sets. In this report, we focus on nanomaterial interactions with colorimetric and fluorometric dyes, components of cell culture growth medium and genotoxicity assay components, and the resultant consequences on test systems are demonstrated. Thus, highlighting some of the potential confounding factors that need to be considered in order to ensure that in vitro genotoxicity assays report true biological impacts in response to nanomaterial exposure.
1 In order to characterize the roles of tyrosine kinases (TKs) and epidermal growth factor receptor (EGFR) in diabetes-induced vascular dysfunction, we investigated the ability of a chronic administration of genistein, a broad-spectrum inhibitor of TKs and AG1478, a specific inhibitor of EGFR TK activity to modulate the altered vasoreactivity of the perfused mesenteric bed to common vasoconstrictors and vasodilators in streptozotocin (STZ)-induced diabetes in rats. 2 The vasoconstrictor responses induced by norepinephrine (NE), endothelin-1 (ET-1) and angiotensin II (Ang II), were significantly increased, whereas vasodilator responses to carbachol and histamine were significantly reduced in the perfused mesenteric bed of STZ-induced diabetic rats in comparison with healthy rats. Treatment of diabetic animals with genistein or AG1478 produced a significant normalization of the altered agonist-induced vasoconstrictor and vasodilator responses without affecting blood glucose levels. In contrast, neither inhibitor had any effect on the vascular responsiveness of control (nondiabetic) animals. Treatment of diabetic animals with diadzein, an inactive analogue of genistein, did not affect the vasoconstrictor and vasodilator responses in control or diabetic animals. Phosphorylated EGFR levels were markedly raised in the mesenteric bed from diabetic animals and were normalized upon treatment with AG1478 or genistein. 3 These data suggest that activation of TK-mediated pathways, including EGFR TK signalling are involved in the development of diabetic vascular dysfunction.
Due to the unique physicochemical properties of nanomaterials (NM) and their unknown reactivity, the possibility of NM altering the optical properties of fluorometric/colorimetric probes that are used to measure their cyto- and genotoxicity may lead to inaccurate readings. This could have potential implications given that NM, such as ultrafine superparamagnetic iron oxide nanoparticles (USPION), are increasingly finding their use in nanomedicine and the absorbance/fluorescence based assays are used to assess their toxicity. This study looks at the potential of dextran-coated USPION (dUSPION) (maghemite and magnetite) to alter the background signal of common probes used for evaluating cytotoxicity (MTS, CyQUANT, Calcein, and EthD-1) and oxidative stress (DCFH-DA and APF). In the present study, both forms of dUSPION caused an increase in MTS signal but a decrease in background signal from calcein and 3'-(p-aminophenyl) fluorescein (APF) and no effect on CyQUANT and EthD-1 fluorescence responses. Magnetite caused a decrease in fluorescence signal of DCFH, but it did not decrease fluorescence signal in the presence of the reactive oxygen species-inducer tert-butyl hydroperoxide (TBHP). In contrast, maghemite caused an increase in fluorescence, which was substantially reduced in the presence of the antioxidant N-acetyl cysteine. This study emphasizes the importance of considering and controlling for possible interactions between NM and fluorometric/colorimetric dyes and, most importantly, the oxidation state of dUSPION that may confound their sensitivity and specificity.
Oxidative stress contributes to many disease etiologies including ageing, neurodegeneration, and cancer, partly through DNA damage induction (genotoxicity). Understanding the i nteractions of free radicals with DNA is fundamental to discern mutation risks. In genetic toxicology, regulatory authorities consider that most genotoxins exhibit a linear relationship between dose and mutagenic response. Yet, homeostatic mechanisms, including DNA repair, that allow cells to tolerate low levels of genotoxic exposure exist. Acceptance of thresholds for genotoxicity has widespread consequences in terms of understanding cancer risk and regulating human exposure to chemicals/drugs. Three pro-oxidant chemicals, hydrogen peroxide (H(2)O(2)), potassium bromate (KBrO(3)), and menadione, were examined for low dose-response curves in human lymphoblastoid cells. DNA repair and antioxidant capacity were assessed as possible threshold mechanisms. H(2)O(2) and KBrO(3), but not menadione, exhibited thresholded responses, containing a range of nongenotoxic low doses. Levels of the DNA glycosylase 8-oxoguanine glycosylase were unchanged in response to pro- oxidant stress. DNA repair-focused gene expression arrays reported changes in ATM and BRCA1, involved in double-strand break repair, in response to low-dose pro-oxidant exposure; however, these alterations were not substantiated at the protein level. Determination of oxidatively induced DNA damage in H(2)O(2)-treated AHH-1 cells reported accumulation of thymine glycol above the genotoxic threshold. Further, the H(2)O(2) dose-response curve was shifted by modulating the antioxidant glutathione. Hence, observed pro- oxidant thresholds were due to protective capacities of base excision repair enzymes and antioxidants against DNA damage, highlighting the importance of homeostatic mechanisms in "genotoxic tolerance."
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.