Rho family small GTPases regulate multiple cellular functions through reorganization of the actin cytoskeleton. Among them, Cdc42 and Tc10 induce filopodia or peripheral processes in cultured cells. We have identified a member of the family, designated as RhoT, which is closely related to Tc10. Tc10 was highly expressed in muscular tissues and brain and remarkably induced during differentiation of C2 skeletal muscle cells and neuronal differentiation of PC12 and N1E-115 cells. On the other hand, RhoT was predominantly expressed in heart and uterus and induced during neuronal differentiation of N1E-115 cells. Tc10 exogenously expressed in fibroblasts generated actin-filament-containing peripheral processes longer than the Cdc42-formed filopodia, whereas RhoT produced much longer and thicker processes containing actin filaments. Furthermore, both Tc10 and RhoT induced neurite outgrowth in PC12 and N1E-115 cells, but Cdc42 did not do this by itself. Tc10 and RhoT as well as Cdc42 bound to the N-terminal CRIB-motif-containing portion of N-WASP and activated N-WASP to induce Arp2/3-complex-mediated actin polymerization. The formation of peripheral processes and neurites by Tc10 and RhoT was prevented by the coexpression of dominant-negative mutants of N-WASP. Thus, N-WASP is essential for the process formation and neurite outgrowth induced by Tc10 and RhoT. Neuronal differentiation of PC12 and N1E-115 cells induced by dibutyryl cyclic AMP and by serum starvation, respectively, was prevented by dominant-negative Cdc42,Tc10 and RhoT. Taken together, all these Rho family proteins are required for neuronal differentiation, but they exert their functions differentially in process formation and neurite extension. Consequently, N-WASP activated by these small GTPases mediates neuronal differentiation in addition to its recently identified role in glucose uptake.
Purpose: Cancer-associated fibroblasts have emerged to be highly heterogenous and can play multifaceted roles in dictating pancreatic ductal adenocarcinoma (PDAC) progression, immunosuppression, and therapeutic response, highlighting the need for a deeper understanding of stromal heterogeneity between patients and even within a single tumor. We hypothesized that image analysis of fibroblast subpopulations and collagen in PDAC tissues might guide stroma-based patient stratification to predict clinical outcomes and tumor characteristics. Experimental Design: A novel multiplex IHC-based image analysis system was established to digitally differentiate fibroblast subpopulations. Using whole-tissue slides from 215 treatment-naïve PDACs, we performed concurrent quantification of principal fibroblast subpopulations and collagen and defined three stroma types: collagen-rich stroma, fibroblast activation protein α (FAP)-dominant fibroblast-rich stroma, and α smooth muscle actin (ACTA2)-dominant fibroblast-rich stroma. These stroma types were assessed for the associations with cancer-specific survival by multivariable Cox regression analyses and with clinicopathologic factors, including CD8+ cell density. Results: FAP-dominant fibroblasts and ACTA2-dominant fibroblasts represented the principal distinct fibroblast subpopulations in tumor stroma. Stroma types were associated with patient survival, SMAD4 status, and transcriptome signatures. Compared with FAP-dominant fibroblast-rich stroma, collagen-rich stroma correlated with prolonged survival [HR, 0.57; 95% confidence interval (CI), 0.33–0.99], while ACTA2-dominant fibroblast-rich stroma exhibited poorer prognosis (HR, 1.65; 95% CI, 1.06–2.58). FAP-dominant fibroblast-rich stroma was additionally characterized by restricted CD8+ cell infiltrates and intense neutrophil infiltration. Conclusions: This study identified three distinct stroma types differentially associated with survival, immunity, and molecular features, thereby underscoring the importance of stromal heterogeneity in subtyping pancreatic cancers and supporting the development of antistromal therapies.
The mechanochemical behavior of Pt(5dpb)Cl (5dpbH = 1,3-di(5-methyl-2-pyridyl)benzene) was investigated in terms of solid-state luminescence. The yellow luminescence of the crystalline complex changed to orange when grinding into fine powder on a glass substrate with a spatula. A broad emission band, which was not detected for the crystal, was observed at around 670 nm for the powder. The powder X-ray diffraction (XRD) pattern was the same as that calculated from X-ray crystallographic data of the single crystal. A broad band appeared within 100 ns after laser excitation accompanied by quenching of the s(pi,pi*) emission of Pt(5dpb)Cl, which was then weakened with decreasing temperature and disappeared below 120 K. The phenomenon was very similar to the excimer formation observed in solution. A related complex, Pt(dpb)Cl (dpbH = 1,3-di(2-pyridyl)benzene), also exhibited luminescent mechanochromism. However, the broad emission that appeared upon grinding still remained at 77 K, and XRD showed that the ground sample of Pt(dpb)Cl was amorphous.
Midkine is a heparin-binding growth factor highly expressed in various cancers, including neuroblastoma, the most common extracranial pediatric solid tumor. Prognosis of patients with neuroblastoma in which MYCN is amplified remains particularly poor. In this study, we used a MYCN transgenic model for neuroblastoma in which midkine is highly expressed in precancerous lesions of sympathetic ganglia. Genetic ablation of midkine in this model delayed tumor formation and reduced tumor incidence. Furthermore, an RNA aptamer that specifically bound midkine suppressed the growth of neuroblastoma cells in vitro and in vivo in tumor xenografts. In precancerous lesions, midkine-deficient MYCN transgenic mice exhibited defects in activation of Notch2, a candidate midkine receptor, and expression of the Notch target gene HES1. Similarly, RNA aptamer-treated tumor xenografts also showed attenuation of Notch2-HES1 signaling. Our findings establish a critical role for the midkine-Notch2 signaling axis in neuroblastoma tumorigenesis, which implicates new strategies to treat neuroblastoma. Cancer Res; 73(4); 1318-27. Ó2012 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.