Prodigiosin, a secondary metabolite produced by Serratia marcescens, has attracted attention due to its immunosuppressive, antimicrobial, and anticancer properties. However, information on the regulatory mechanism behind prodigiosin biosynthesis in S. marcescens remains limited. In this work, a prodigiosin-hyperproducing strain with the BVG90_22495 gene disrupted (ZK66) was selected from a collection of Tn5G transposon insertion mutants. Using real-time quantitative PCR (RT-qPCR) analysis, β-galactosidase assays, transcriptomics analysis, and electrophoretic mobility shift assays (EMSAs), the LysR-type regulator MetR encoded by the BVG90_22495 gene was found to affect prodigiosin synthesis, and this correlated with MetR directly binding to the promoter region of the prodigiosin-synthesis positive regulator PigP and hence negatively regulated the expression of the prodigiosin-associated pig operon. More analyses revealed that MetR regulated some other important cellular processes, including methionine biosynthesis, cell motility, H2O2 tolerance, heat tolerance, exopolysaccharide synthesis, and biofilm formation in S. marcescens. Although MetR protein is highly conserved in many bacteria, we report here on the LysR-type regulator MetR exhibiting novel roles in negatively regulating prodigiosin synthesis and positively regulating heat tolerance, exopolysaccharide synthesis, and biofilm formation. IMPORTANCE Serratia marcescens, a Gram-negative bacterium, is found in a wide range of ecological niches and can produce several secondary metabolites, including prodigiosin, althiomycin, and serratamolide. Among them, prodigiosin shows diverse functions as an immunosuppressant, antimicrobial, and anticancer agent. However, the regulatory mechanisms behind prodigiosin synthesis in S. marcescens are not completely understood. Here, we adapted a transposon mutant library to identify the genes related to prodigiosin synthesis, and the BVG90_22495 gene encoding the LysR-type regulator MetR was found to negatively regulate prodigiosin synthesis. The molecular mechanism of the metR mutant hyperproducing prodigiosin was investigated. Additionally, we provided evidence supporting new roles for MetR in regulating methionine biosynthesis, cell motility, heat tolerance, H2O2 tolerance, and exopolysaccharide synthesis in S. marcescens. Collectively, this work provides novel insight into regulatory mechanisms of prodigiosin synthesis and uncovers novel roles for the highly conserved MetR protein in regulating prodigiosin synthesis, heat tolerance, exopolysaccharide (EPS) synthesis, and biofilm formation.
L-asparaginase, which catalyses the hydrolysis of L-asparagine to L-aspartate, has attracted the attention of researchers due to its expanded applications in medicine and the food industry. In this study, a novel thermostable L-asparaginase from Pyrococcus yayanosii CH1 was cloned and over-expressed in Bacillus subtilis 168. To obtain thermostable L-asparaginase mutants with higher activity, a robust high-throughput screening process was developed specifically for thermophilic enzymes. In this process, cell disruption and enzyme activity assays are simultaneously performed in 96-deep well plates. By combining error-prone PCR and screening, six brilliant positive variants and four key amino acid residue mutations were identified. Combined mutation of the four residues showed relatively high specific activity (3108 U/mg) that was 2.1 times greater than that of the wild-type enzyme. Fermentation with the mutant strain in a 5-L fermenter yielded L-asparaginase activity of 2168 U/mL.
Optically pure 1,2-amino alcohols are highly valuable products as intermediates for chiral pharmaceutical products. Here we designed an environmentally friendly non-natural biocatalytic cascade for efficient synthesis of 1,2-amino alcohols from cheaper epoxides. A redesignated ω-transaminase PAKω-TA was tested and showed good bioactivity at a lower pH than other reported transaminases. The cascade was efficiently constructed as a single one-pot E. coli recombinant, by coupling SpEH (epoxide hydrolase), MnADH (alcohol dehydrogenase), and PAKω-TA. Furthermore, RBS regulation strategy was used to overcome the rate limiting step by increasing expression of MnADH. For cofactor regeneration and amino donor source, an interesting point was involved as that a cofactor self-sufficient system was designed by expression of GluDH. It established a “bridge” between the cofactor and the cosubstrate, such that the cofactor self-sufficient system could release cofactor (NADP+) and cosubstrate (l-Glutamine) regenerated simultaneously. The recombinant E. coli BL21 (SGMP) with cofactor self-sufficient whole-cell cascade biocatalysis showed high ee value (>99%) and high yield, with 99.6% conversion of epoxide (S)-1a to 1,2-amino alcohol (S)-1d in 10 h. It further converted (S)-2a–5a to (S)-2d–5d with varying conversion rates ranging between 65–96.4%. This study first provides one-step synthesis of optically pure 1,2-amino alcohols from (S)-epoxides employing a synthetic redox-self-sufficient cascade.
Prodigiosin, a red linear tripyrrole pigment normally secreted by Serratia marcescens, has received attention for its reported immunosuppressive, antimicrobial and anticancer properties. Although several genes have been shown to be important for prodigiosin synthesis, information on the regulatory mechanisms behind this cellular process remains limited. In this work, we identified that the transcriptional regulator RcsB encoding gene BVG90_13250 (rcsB) negatively controlled prodigiosin biosynthesis in S. marcescens. Disruption of rcsB conferred a remarkably increased production of prodigiosin. This phenotype corresponded to RcsB negative control of transcription of the prodigiosin-associated pig operon probably by binding to the promoter region of the prodigiosin synthesis positive regulator FlhDC. Moreover, using transcriptomics and further experiments, we revealed that RcsB also controlled some other important cellular processes, including swimming and swarming motilities, capsular polysaccharide production, biofilm formation, and acid resistance in S. marcescens. Collectively, this work proposes that RcsB is a prodigiosin synthesis repressor in S. marcescens and provides insight into the regulatory mechanism of RcsB on cell motility, capsular polysaccharide production, and acid resistance in S. marcescens. Importance RcsB is a two-component response regulator in the Rcs phosphorelay system, and plays versatile regulatory functions in Enterobacteriaceae. However, information on the function of the RcsB protein in bacteria, especially in S. marcescens remains limited. In this work, we illustrated experimentally that the RcsB protein was involved in diverse cellular processes in S. marcescens, including prodigiosin synthesis, cell motility, capsular polysaccharide production, biofilm formation, and acid resistance. Additionally, the regulatory mechanism of the RcsB protein on these cellular processes was investigated. In conclusion, this work indicated that RcsB could be a regulator for prodigiosin synthesis and provides insight into the function of RcsB protein in S. marcescens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.