IntroductionHyperferritinemia is associated with increased mortality in pediatric sepsis, multiple organ dysfunction syndrome (MODS), and critical illness. The International Histiocyte Society has recommended that children with hyperferritinemia and secondary hemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS) should be treated with the same immunosuppressant/cytotoxic therapies used to treat primary HLH. We hypothesized that patients with hyperferritinemia associated secondary HLH/sepsis/MODS/MAS can be successfully treated with a less immunosuppressant approach than is recommended for primary HLH.MethodsWe conducted a multi-center cohort study of children in Turkish Pediatric Intensive Care units with hyperferritinemia associated secondary HLH/sepsis/MODS/MAS treated with less immunosuppression (plasma exchange and intravenous immunoglobulin or methyl prednisolone) or with the primary HLH protocol (plasma exchange and dexamethasone or cyclosporine A and/or etoposide). The primary outcome assessed was hospital survival.ResultsTwenty-three children with hyperferritinemia and secondary HLH/sepsis/MODS/MAS were enrolled (median ferritin = 6341 μg/dL, median number of organ failures = 5). Univariate and multivariate analyses demonstrated that use of plasma exchange and methyl prednisolone or intravenous immunoglobulin (n = 17, survival 100%) was associated with improved survival compared to plasma exchange and dexamethasone and/or cyclosporine and/or etoposide (n = 6, survival 50%) (P = 0.002).ConclusionsChildren with hyperferritinemia and secondary HLH/sepsis/MODS/MAS can be successfully treated with plasma exchange, intravenous immunoglobulin, and methylprednisone. Randomized trials are required to evaluate if the HLH-94 protocol is helpful or harmful compared to this less immune suppressive and cytotoxic approach in this specific population.
Pulmonary oxygen toxicity is believed to play a prominent role in the lung injury that leads to the development of bronchopulmonary dysplasia (BPD). To determine whether human recombinant erythropoietin (rhEPO) treatment reduces the risk of developing BPD, we investigated the effect of rhEPO treatment on the histopathologic changes seen in hyperoxia-induced lung injury of BPD. Twenty-five rat pups were divided into four groups: air-exposed control group (n ϭ 5), hyperoxia-exposed placebo group (n ϭ 7), hyperoxia-exposed rhEPO-treated group (n ϭ 6), and air-exposed rhEPO-treated group (n ϭ 7). Measurement of alveolar surface area, quantification of secondary crest formation, microvessel count, evaluation of alveolar septal fibrosis, and smooth muscle actin immunostaining were performed to assess hyperoxia-induced changes in lung morphology. Treatment of hyperoxia-exposed animals with rhEPO resulted in a significant increase in the mean alveolar area, number of secondary crests formed, and the microvessel count in comparison with hyperoxia-exposed placebo-treated animals. There was significantly less fibrosis in rhEPO-treated animals. However, treatment of hyperoxia-exposed animals with rhEPO did not result in a significant change in smooth muscle content compared with hyperoxia-exposed placebo treated animals. Our results suggest treatment with rhEPO during hyperoxia exposure is associated with improved alveolar structure, enhanced vascularity, and decreased fibrosis. Therefore, we conclude that treatment of preterm infants with EPO might reduce the risk of developing BPD. Despite the improvements in preventing acute respiratory disease in preterm infants, the incidence of BPD remains largely unchanged. The pathophysiology of BPD has been extensively studied for several decades, and pulmonary oxygen toxicity is believed to play a prominent role in the lung injury process that leads to the development of BPD (1). Histopathologic characteristics of the lung injury in BPD are lack of increased complexity (a decrease in alveolarization), abnormal capillary morphology, and an interstitium with variable cellularity/fibroproliferation (2).The treatment goals of BPD focus on minimizing ongoing injury, reducing inflammation, maintaining adequate oxygenation, and facilitating lung growth. A number of groups have used antioxidants to prevent BPD without any significant benefit (3). Corticosteroids facilitate extubation and decrease neonatal respiratory support and oxygen exposure. However, these short-term benefits are achieved at the expense of serious neonatal complications such as poor brain and somatic growth, and substantially worse neuromotor and developmental outcomes in early childhood (4). Therefore, investigating the effectiveness of new strategies in the treatment of BPD is of great interest.EPO is a 30.4-kD glycoprotein that regulates the rate of red blood cell production, through binding to its specific cell surface receptors. It has been used for many years to treat anemia of prematurity (5,6). In addition, in...
Myocardial contractile dysfunction accompanies both systemic and cardiac insults. Septic shock and burn trauma can lead to reversible contractile deficits, whereas ischemia and direct inflammation of the heart can precipitate transient or permanent impairments in contractility. Many of the insults that trigger contractile dysfunction also activate the innate immune system. Activation of the innate immune response to infection is coordinated by the conserved Toll/interleukin-1 (IL-1) signal transduction pathway. Interestingly, components of this pathway are also expressed in normal and failing hearts, although their function is unknown. The hypotheses that Toll/IL-1 signaling occurs in the heart and that intact pathway function is required for contractile dysfunction after different insults were tested. Results from these experiments demonstrate that lipopolysaccharides (LPS) activate Toll/IL-1 signaling and IL-1 receptor-associated kinase-1 (IRAK1), a critical pathway intermediate in the heart, indicating that the function of this pathway is not limited to immune system tissues. Moreover, hearts lacking IRAK1 exhibit impaired LPS-triggered downstream signal transduction. Hearts from IRAK1-deficient mice also resist acute LPS-induced contractile dysfunction. Finally, IRAK1 inactivation enhances survival of transgenic mice that develop severe myocarditis and lethal heart failure. Thus the Toll/IL-1 pathway is active in myocardial tissue and interference with pathway function, through IRAK1 inactivation, may represent a novel strategy to protect against cardiac contractile dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.