Downsizing in combination with turbocharging represents the main technology trend for meeting climate relevant CO 2 emission standards in gasoline engine applications. Extended levels of downsizing involve increasing degrees of pulse charging. Separation of cylinder blow downs, either with double entry turbines or valve train variability, is key for achieving enhanced rated power and low-end-torque targets in highly boosted fourcylinder engines.However, double entry turbines feature specific development challenges: The aerodynamic design via 3D CFD calculations presents a difficult task as well as the engine performance modeling and matching process in 1D gas exchange simulations. From a manufacturing standpoint, casting of the turbine housing is complex especially for small displacement applications below 1.6 l due to e. g. thermo-mechanical boundaries. This paper demonstrates how to design and model double entry turbine performance characteristics within 1D gas exchange simulations, requiring special measured and processed turbine data, which is experimentally assessed on a hot gas test bench using a double burner setup. It is shown how the collective of the described development strategies can be used in assessing the potential of different turbine design concepts. This allows the turbocharger to be designed exactly to specific engine requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.