This letter shows that the increase of heat exchanger pile capacity in response to heating, observed in several small-scale laboratory studies cannot be directly attributed to the increase of contact pressure at the soil/pile interface. The main thermo-hydro-mechanical processes that influence the capacity and behavior of heat exchanger piles include thermal hardening of the soil, thermally induced water flow, excess pore pressure development and volume changes upon thermal consolidation. Due to the lack of understanding of the behaviour around the soil-pile interface, thermo-mechanical interactions between the heat exchanger pile and the ground are not taken into account appropriately in energy foundation design. However, in situ and reduced-scale experiments provide evidence about temperature-induced changes in pile capacity, presumably as a result of the altered stress state around the test pile. A Finite Element analysis was conducted to quantitatively assess the radial stresses and strains undergone by a heated pile embedded in deformable soil. The study indicates that radial contact pressures typically increase less than 15 kPa, which cannot fully explain the increase of shaft resistance observed in heating tests. Further analyses are underway to characterize the mechanisms that govern pile loaddisplacement behavior and limit state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.