Annual decreases in soybean (Glycine max L. Merrill) yield caused by diseases were estimated by surveying university-affiliated plant pathologists in 28 soybean-producing states in the United States and in Ontario, Canada, from 2010 through 2014. Estimated yield losses from each disease varied greatly by state or province and year. Over the duration of this survey, soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) was estimated to have caused more than twice as much yield loss than any other disease. Seedling diseases (caused by various pathogens), charcoal rot (caused by Macrophomina phaseolina (Tassi) Goid), and sudden death syndrome (SDS) (caused by Fusarium virguliforme O’Donnell & T. Aoki) caused the next greatest estimated yield losses, in descending order. The estimated mean economic loss due to all soybean diseases, averaged across U.S. states and Ontario from 2010 to 2014, was $60.66 USD per acre. Results from this survey will provide scientists, breeders, governments, and educators with soybean yield-loss estimates to help inform and prioritize research, policy, and educational efforts in soybean pathology and disease management.
Abstract. In this paper we define the first "Regional Atmosphere and Land" (RAL) science configuration for kilometre scale modelling using the UM and JULES. "RAL1" defines the science configuration of the dynamics and physics schemes of the atmosphere and land. This configuration will provide a model baseline for any future weather or climate model developments to be described against and it is the intention that from this point forward significant changes to the system will be documented in literature. This is reproducing the process used for global configurations of the UM which was first documented as a science configuration in 2011. While it is our goal to have a single defined configuration of the model that performs effectively in all regions, this has not yet been possible. Currently we define two sub-releases, one for mid-latitudes (RAL1-M) and one for tropical regions (RAL1-T). The differences between RAL1-M and RAL1-T are documented and where appropriate, we define how the model configuration relates to the corresponding configuration of the global forecasting model.
Soybean (Glycine max L. Merrill) is an economically important commodity for United States agriculture. Nonetheless, the profitability of soybean production has been negatively impacted by soybean diseases. The economic impacts of 23 common soybean diseases were estimated in 28 soybean-producing states in the U.S., from 1996 to 2016 (the entire data set consisted of 13,524 data points). Estimated losses were investigated using a variety of statistical approaches. The main effects of state, year, pre-and post-discovery of soybean rust, region, and zones based on yield, harvest area, and production, were significant on "total economic loss" as a function of diseases. Across states and years, the soybean cyst nematode, charcoal rot, and seedling diseases were the most economically damaging diseases while soybean rust, bacterial blight, and southern blight were the least economically damaging. A significantly greater mean loss (51%) was observed in states/years after the discovery of soybean rust (2004 to 2016) compared to the pre-discovery (1996 to 2003).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.