Abstract. The JEM-X monitor provides X-ray spectra and imaging with arcminute angular resolution in the 3 to 35 keV band. The good angular resolution and the low energy response of JEM-X plays an important role in the identification of gamma ray sources and in the analysis and scientific interpretation of the combined X-ray and gamma ray data. JEM-X is a coded aperture instrument consisting of two identical, coaligned telescopes. Each of the detectors has a sensitive area of 500 cm 2 , and views the sky through its own coded aperture mask. The two coded masks are inverted with respect to each other and provides an angular resolution of 3 across an effective field of view of about 10• diameter.
The nine-year H.E.S.S. Galactic Plane Survey (HGPS) has yielded the most uniform observation scan of the inner Milky Way in the TeV gamma-ray band to date. The sky maps and source catalogue of the HGPS allow for a systematic study of the population of TeV pulsar wind nebulae found throughout the last decade. To investigate the nature and evolution of pulsar wind nebulae, for the first time we also present several upper limits for regions around pulsars without a detected TeV wind nebula. Our data exhibit a correlation of TeV surface brightness with pulsar spin-down powerĖ. This seems to be caused both by an increase of extension with decreasingĖ, and hence with time, compatible with a power law RPWN(Ė) ∼Ė −0.65±0.20 , and by a mild decrease of TeV gamma-ray luminosity with decreasingĖ, compatible with L1−10 TeV ∼Ė 0.59±0.21 . We also find that the offsets of pulsars with respect to the wind nebula centre with ages around 10 kyr are frequently larger than can be plausibly explained by pulsar proper motion and could be due to an asymmetric environment. In the present data, it seems that a large pulsar offset is correlated with a high apparent TeV efficiency L1−10 TeV /Ė. In addition to 14 HGPS sources considered firmly identified pulsar wind nebulae and 5 additional pulsar wind nebulae taken from literature, we find 10 HGPS sources that are likely TeV pulsar wind nebula candidates. Using a model that subsumes the present common understanding of the very high-energy radiative evolution of pulsar wind nebulae, we find that the trends and variations of the TeV observables and limits can be reproduced to a good level, drawing a consistent picture of present-day TeV data and theory.
The diffuse very high−energy (VHE, > 100 GeV) γ-ray emission observed in the central 200 pc of the Milky Way by H.E.S.S. was found to follow the dense matter distribution in the Central Molecular Zone (CMZ) up to a longitudinal distance of about 130 pc to the Galactic Centre (GC), where the flux rapidly decreases. This was initially interpreted as the result of a burst−like injection of energetic particles 10 4 years ago, but a recent more sensitive H.E.S.S. analysis revealed that the cosmic−ray (CR) density profile drops with the distance to the centre, making data compatible with a steady cosmic PeVatron at the GC. In this paper, we extend this analysis to obtain for the first time a detailed characterisation of the correlation with matter and to search for additional features and individual γ-ray sources in the inner 200 pc. Taking advantage of 250 hours of H.E.S.S. data and improved analysis techniques we perform a detailed morphology study of the diffuse VHE emission observed from the GC ridge and reconstruct its total spectrum. To test the various contributions to the total γ-ray emission, we use an iterative 2D maximum likelihood approach that allows us to build a phenomenological model of the emission by summing a number of different spatial components. We show that the emission correlated with dense matter covers the full CMZ and that its flux is about half the total diffuse emission flux. We also detect some emission at higher latitude likely produced by hadronic collisions of CRs in less dense regions of the GC interstellar medium. We detect an additional emission component centred on the GC and extending over about 15 pc that is consistent with the existence of a strong CR density gradient and confirms the presence of a CR accelerator at the very centre of our Galaxy. We show that the spectrum of the full ridge diffuse emission is compatible with the one previously derived from the central regions, suggesting that a single population of particles fills the entire CMZ. Finally, we report the discovery of a VHE γ-ray source near the GC radio arc and argue that it is produced by the pulsar wind nebula candidate G0.13−0.11.
SUMMARYFor the purpose of developing a national system for outbreak surveillance, local outbreak signals were compared in three sources of syndromic data – telephone triage of acute gastroenteritis, web queries about symptoms of gastrointestinal illness, and over-the-counter (OTC) pharmacy sales of antidiarrhoeal medication. The data sources were compared against nine known waterborne and foodborne outbreaks in Sweden in 2007–2011. Outbreak signals were identified for the four largest outbreaks in the telephone triage data and the two largest outbreaks in the data on OTC sales of antidiarrhoeal medication. No signals could be identified in the data on web queries. The signal magnitude for the fourth largest outbreak indicated a tenfold larger outbreak than officially reported, supporting the use of telephone triage data for situational awareness. For the two largest outbreaks, telephone triage data on adult diarrhoea provided outbreak signals at an early stage, weeks and months in advance, respectively, potentially serving the purpose of early event detection. In conclusion, telephone triage data provided the most promising source for surveillance of point-source outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.