The increasing demand for clean energy sources that do not add more carbon dioxide and other pollutants to the environment has resulted in increased attention worldwide to the possibilities of a "hydrogen economy" as a long-term solution for a secure energy future based on potentially renewable resources. [1][2][3] Some of the greatest challenges are the discovery and development of new on-board hydrogen-storage materials and catalysts for fuel-cell-powered vehicles. New materials that store both high gravimetric (! 90 gm H 2 kg À1 ) and high volumetric (! 82 gm H 2 L À1 ) densities of hydrogen that can be delivered at temperatures between À20 and 85 8C are needed by the year 2015. [4] The volumetric constraints eliminate from consideration pressurized hydrogen systems and guide towards the development of solid storage materials. [5] There are several broad classes of solid hydrogenstorage materials that are currently being investigated as potential on-board storage materials: 1) metal materials, hydrides (e.g., MgH 2 ), [6] imides (e.g., LiNH 2 ), [7] and organic frameworks (e.g., Zn 4 O(1,4-benezenedicarboxylate)), [8] 2) complex hydrides (e.g., NaAlH 4 ), [9] and 3) carbon materials (e.g., carbon nanofibers, [10] single-wall carbon nanotubes). [11] The most thoroughly studied complex hydride, NaAlH 4 , has been shown to release hydrogen at 110 8C when doped with Ti; [12] however, the kinetics are very slow and hydrogen-storage densities are too low (56 gm H 2 kg À1 ) to meet long-term targets. The temperatures for H 2 release from carbon materials are too low, and the reported storage densities are controversial. [13] The hydrolysis of metal hydrides is being explored, but the unfavorable thermodynamics for regeneration of the spent material prevents their widespread application. For example, the reaction NaBH 4 +4 H 2 O!NaB(OH) 4 +4 H 2 is exothermic by À250 kJ mol À1 . Reaction enthalpy for hydrogen loss is an important property since near-thermoneutral thermodynamics will be critical for materials for reversible H 2 storage. To date, few of these materials meet the long-term gravimetric requirements and provide rapid hydrogen release at temperatures between À20 and 85 8C; thus, new materials and novel approaches are needed. Herein we show that the kinetics of hydrogen release are significantly enhanced at low temperatures for a new hybrid material, ammonia borane infused in nanoporous silica, and that the hydrogen purity is increased. These findings suggest that hydrogen-rich materials infused in nanoscaffolds offer a most promising approach to on-board hydrogen storage.Chemical hydrogen-storage materials that release H 2 by thermolysis without generating CO 2 may offer an attractive alternative to other systems studied. For example, the NH x BH x family of compounds [14] should provide favorable gravimetric densities of 245, 196, 140, and 75 gm H 2 kg À1 for x = 4, 3, 2, and 1, respectively. As the NB unit is isoelectronic with CC, these materials are viewed as inorganic analogues of hydrocarbons. Howeve...
Ultrafine Pt nanoparticles were successfully immobilized inside the pores of a metal-organic framework, MIL-101, without aggregation of Pt nanoparticles on the external surfaces of framework by using a "double solvents" method. TEM and electron tomographic measurements clearly demonstrated the uniform three-dimensional distribution of the ultrafine Pt NPs throughout the interior cavities of MIL-101. The resulting Pt@MIL-101 composites represent the first highly active MOF-immobilized metal nanocatalysts for catalytic reactions in all three phases: liquid-phase ammonia borane hydrolysis, solid-phase ammonia borane thermal dehydrogenation, and gas-phase CO oxidation.
The mechanism of hydrogen release from solid state ammonia borane (AB) has been investigated via in situ solid state (11)B and (11)B{(1)H} MAS-NMR techniques in external fields of 7.1 T and 18.8 T at a decomposition temperature of 88 degrees C, well below the reported melting point. The decomposition of AB is well described by an induction, nucleation and growth mechanistic pathway. During the induction period, little hydrogen is released from AB; however, a new species identified as a mobile phase of AB is observed in the (11)B NMR spectra. Subsequent to induction, at reaction times when hydrogen is initially being released, three additional species are observed: the diammoniate of diborane (DADB), [(NH(3))(2)BH(2)](+)[BH(4)](-), and two BH(2)N(2) species believed to be the linear (NH(3)BH(2)NH(2)BH(3)) and cyclic dimer (NH(2)BH(2))(2) of aminoborane. At longer reaction times the sharper features are replaced by broad, structureless peaks of a complex polymeric aminoborane (PAB) containing both BH(2)N(2) and BHN(3) species. The following mechanistic model for the induction, nucleation and growth for AB decomposition leading to formation of hydrogen is proposed: (i) an induction period that yields a mobile phase of AB caused by disruption of the dihydrogen bonds; (ii) nucleation that yields reactive DADB from the mobile AB; and (iii) growth that includes a bimolecular reaction between DADB and AB to release the stored hydrogen.
The safe and efficient storage of hydrogen is widely recognized as one of the key technological challenges in the transition towards a hydrogen-based energy economy. Whereas hydrogen for transportation applications is currently stored using cryogenics or high pressure, there is substantial research and development activity in the use of novel condensed-phase hydride materials. However, the multiple-target criteria accepted as necessary for the successful implementation of such stores have not yet been met by any single material. Ammonia borane, NH3BH3, is one of a number of condensed-phase compounds that have received significant attention because of its reported release of approximately 12 wt% hydrogen at moderate temperatures (approximately 150 degrees C). However, the hydrogen purity suffers from the release of trace quantities of borazine. Here, we report that the related alkali-metal amidoboranes, LiNH2BH3 and NaNH2BH3, release approximately 10.9 wt% and approximately 7.5 wt% hydrogen, respectively, at significantly lower temperatures (approximately 90 degrees C) with no borazine emission. The low-temperature release of a large amount of hydrogen is significant and provides the potential to fulfil many of the principal criteria required for an on-board hydrogen store.
Thermal decomposition of magnesium borohydride, Mg(BH(4))(2), in the solid state was studied by a combination of PCT, TGA/MS and NMR spectroscopy. Dehydrogenation of Mg(BH(4))(2) at 200 °C en vacuo results in the highly selective formation of magnesium triborane, Mg(B(3)H(8))(2). This process is reversible at 250 °C under 120 atm H(2). Dehydrogenation at higher temperature, >300 °C under a constant argon flow of 1 atm, produces a complex mixture of polyborane species. A borohydride condensation mechanism involving metal hydride formation is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.