1. Lake restoration from eutrophication often rests on a simple paradigm that restriction of phosphorus sources will result in recovery of former relatively clear-water states. This view has apparently arisen from early successful restorations of deep lakes in catchments of poorly weathered rocks. Lakes in the lowlands, however, particularly shallow ones, have proved less tractable to restoration. This study of three lowland lakes provides insights that illuminate a more complex picture. 2. The lakes lie in a sequence along a single stream in a mixed urban and rural landscape. Severely deoxygenating effluent from an overloaded sewage treatment works was diverted from the catchment in 1991. Effects on two lakes, Little Mere (z max <2 m) and Rostherne Mere (z max 31 m) were followed until 2002. Mere Mere (z max ¼ 8 m), upstream of the former works, acted as a comparison for changes in water chemistry. Mere Mere showed no change in total phosphorus (TP), total inorganic nitrogen, or planktonic chlorophyll a concentrations. Increased winter rainfall was associated with higher winter soluble reactive phosphorus (SRP) and ammonium concentrations in its water. 3. Little Mere changed from a deoxygenated, highly enriched, fishless system, with large populations of Daphnia magna Straus, clear water and about 40% aquatic plant cover, to a slightly less clear system following diversion. Daphnia magna was replaced by D. hyalina Leydig as fish recolonised. Spring peaks of chlorophyll a declined but summer concentrations increased significantly. Annual mean chlorophyll a concentrations thus showed no change. Submerged plants became more abundant (up to 100% cover), with fluctuating community composition from year to year. Summer release of SRP from the sediment was substantial and has not decreased since 1993. The summer phytoplankton was apparently controlled by nitrogen availability perhaps with some influence of zooplankton grazing. SRP was always very abundant. The lake appeared to have reached a quasi-stable state by 2002. 5. Rostherne Mere showed a steady decline in TP and SRP concentrations following effluent diversion apparently as a result of steady dilution by water with lower phosphorus concentration. Decline in phosphorus concentrations was much less rapid Correspondence: Brian Moss, Ó 2005 Blackwell Publishing Ltd 1687 than expected because of internal remobilisation from the hypolimnion and sediments.There have been no changes in chlorophyll a concentration or of nitrogen availability and by 2002 the phytoplankton probably remained limited by a combination of mixing, grazing and nitrogen. 6. A seeming paradox is, thus, that immense changes in phosphorus budgets have shown no consequences for phytoplankton chlorophyll concentrations in either of the lakes, although the seasonal distribution has altered in Little Mere. Although these case studies deviate from others, for both shallow and deep lakes, they represent distinctive situations rather than undermining conventional models.
ABSTRACT1. The alternative stable states hypothesis for the behaviour of shallow lake communities requires switches to transform clear-water macrophyte-dominated communities to turbid algal-dominated ones. Such switches have rarely been demonstrated experimentally. This study shows the role of rising salinity as such a switch while contributing a solution to the conservation problems of an important nature reserve.2. Hickling Broad changed from a clear-water, charophyte-dominated lake to a turbid, phytoplankton-dominated lake in the early 1970s, probably owing to guanotrophication by gulls and to increased salinity from more intensive pumping of the agricultural land that separates its main inflow from the nearby North Sea. Following a decline in nutrient loading as the gull flock moved away, the plants began to return during the 1980s and 1990s. In 1998/99, the water cleared and charophytes, including some very rare species, were abundant.3. This was welcome to conservation bodies, but the vigorous growth precluded competitive sailing and there were conflicts with the local sailing club. The plants, however, began an irregular decline in 2000, though nutrient loadings and other conventional chemical drivers have remained steady. 4. Our hypothesis was that the unstable nature of the plant community was linked to high salinity, and that if salinity were lowered there would be vigorous and reliable growth, enabling annual cutting of plants to allow sailing races. In an experiment using mesocosms, salinities straddling the current values in the Broad led to declines in plant biomass, macrophyte species richness and macrophyte Shannon-Weaver diversity through increased release of phosphorus from the sediments, increased algal turbidity and reduction of zooplankton grazer activity.5. Stabilization of the plant community of Hickling Broad would be achieved by a reduction of present salinities by about 20%. This would be possible by use of existing Environmentally Sensitive Area (High Level Environmental Stewardship) arrangements or diversion of some pumped drainage water to the sea. There remain some uncertainties about the future of the area because of rising sea levels.
Areas of water shortage comprise many smaller sub-areas into which water is transported from external sources. Fairness and efficiency of distribution are overriding principles. Each local area requires adequate water for community and ecological purposes as well as a supply sufficient to maximise economic growth. Within arid and semi-arid areas, there are conflicts between the sub-areas and between these three types of water use, which can erupt into violent confrontations between different user groups. This study has developed a dynamic model for equitable distribution of water in water-shortage areas and aims to optimally satisfy the requirements of each locality, given limited supplies, and to maximise the total economic benefit of the entire area. The Heihe River Basin in northwest China was chosen as the area for the pilot study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.