Insects are potential ingredients for animal feed and human food. Their suitability may be influenced by species and nutritional value. This study was aimed at determining the nutritional profile of four insects: Dipterans; black soldier fly (Hermetia illucens Linnaeus) family stratiomyidae and blue calliphora flies (Calliphora vomitoria Linnaeus) family Calliphoridae; and orthopterans; crickets (Acheta domesticus Linnaeus) family Gryllidae and grasshoppers (Ruspolia nitidula Linnaeus) family Tettigoniidae to establish their potential as alternative protein sources for animals (fish and poultry) and humans. Gross energy, crude protein, crude fat, crude fiber, carbohydrates, and total ash were in the ranges of 2028.11–2551.61 kJ/100 g, 44.31–64.90, 0.61–46.29, 5.075–16.61, 3.43–12.27, and 3.23–8.74 g/100 g, respectively. Hermetia illucens had the highest energy and ash content; C. vomitoria were highest in protein and fiber content, R. nitidula were highest in fat, whereas A. domesticus had the highest carbohydrate content. All insects had essential amino acids required for poultry, fish, and human nutrition. The arginine to lysine ratios of H. illucens, C. vomitoria, A. domesticus, and R. nitidula were 1.45, 1.06, 1.06, and 1.45, respectively. The fatty acids comprised of polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs). Palmitic acid (23.6–38.8 g/100 g of total fat) was the most abundant SFA, exception R. nitidula with 14 g/100 g stearic acid. Linoleic acid (190–1,723 mg/100 g) and linolenic acid (650–1,903 mg/100 g) were the most abundant PUFAs. Only C. vomitoria had docosahexaenoic acid. The study indicates that the insects studied are rich in crude protein and other nutrients and can potentially be used for human and animal (fish and poultry) feeding.
Application of advanced agronomic practices may affect the sensory attributes of plant products. The study determined the trader physical acceptability of farmer preferred African eggplant (nakati) genotypes (E11, E15 and E16); and later studied the impact of bio-control treatments; Trichoderma spp (TRI). and Arbuscular Mycorrhizal Fungi (AMF) on consumer sensory appeal of genotypes using standard sensory evaluation methods. The trader acceptability of genotypes based on leaf number, succulence, smoothness, colour, and shininess were significantly different; except for the hard-textured leaves of E11 (P ≤ 0.05). Leaf appearance (E11) and stalk-leaf quantity (E15 and E16) were preferred by high-end and low-end markets, respectively. Consumer sensory acceptability of bio-control-treated samples, above 85% of E15 and E16 was liked based on reduced bitterness (P ≤ 0.05). Using descriptive sensory tastes, results showed that soil bio-control treatment with TRI during the light rain season significantly improved the palatability of E15 and E16. Therefore, use of TRI during light or dry season improves sensory appeal of nakati.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.