We developed a quantitative description of the circuits formed in cat area 17 by estimating the "weight" of the projections between different neuronal types. To achieve this, we made three-dimensional reconstructions of 39 single neurons and thalamic afferents labeled with horseradish peroxidase during intracellular recordings in vivo. These neurons served as representatives of the different types and provided the morphometrical data about the laminar distribution of the dendritic trees and synaptic boutons and the number of synapses formed by a given type of neuron. Extensive searches of the literature provided the estimates of numbers of the different neuronal types and their distribution across the cortical layers. Applying the simplification that synapses between different cell types are made in proportion to the boutons and dendrites that those cell types contribute to the neuropil in a given layer, we were able to estimate the probable source and number of synapses made between neurons in the six layers. The predicted synaptic maps were quantitatively close to the estimates derived from the experimentalelectronmicroscopicstudiesforthecaseofthemainsourcesofexcitatoryandinhibitoryinputtothespinystellatecells,whichform a major target of layer 4 afferents. The map of the whole cortical circuit shows that there are very few "strong" but many "weak" excitatory projections, each of which may involve only a few percentage of the total complement of excitatory synapses of a single neuron.
In all species examined, with the exception of rodents, the axons of neocortical neurons form boutons in multiple separate clusters. Most descriptions of clusters are anecdotal, so here we developed an objective method for identifying clusters. We applied a mean-shift cluster-algorithm to three-dimensional reconstructions of 39 individual neurons and three thalamic afferents from the cat primary visual cortex. Both spiny (20 of 26) and smooth (7 of 13) neurons formed at least two distinct ellipsoidal clusters (range, 2-7). For all cell types, cluster formation is heterogenous, but is regulated so that cluster size and the number of boutons allocated to a cluster equalize with increasing number of clusters formed by a neuron. The bouton density within a cluster is inversely related to the spatial scale of the axon, resulting in a four times greater density for smooth neurons than for spiny neurons. Thus, the inhibitory action of the smooth neurons is much more concentrated and focal than the excitatory action of spiny neurons. The cluster with the highest number of boutons (primary cluster) was typically located around or above the soma of the parent neuron. The distance to the next cluster was proportional to the diameter of the primary cluster, suggesting that there is an optimal distance and spatial focus of the lateral influence of a neuron. The lateral spread of clustered axons may thus support a spoke-like network architecture that routes signals to localized sites, thereby reducing signal correlation and redundancy.
Area V5 (middle temporal) in the superior temporal sulcus of macaque receives a direct projection from the primary visual cortex (V1). By injecting anterograde tracers (biotinylated dextran and Phaseolus vulgaris lectin) into V1, we have examined the synaptic boutons that they form in V5 in the electron microscope. Nearly 80% of the target cells in V5 were spiny (excitatory). The boutons formed asymmetric (Gray's type 1) synapses with spines (54%), dendrites (33%), and somata (13%). All somatic targets and some (26%) of the target dendritic shafts showed features characteristic of smooth (inhibitory) cells. Each bouton formed, on average, 1.7 synapses. The larger boutons formed multiple synapses with the same neuron and completely enveloped the entire spine head. On most dendritic shafts and all somata the postsynaptic density en face was disk-shaped but in about half the cases the reconstructed postsynaptic densities of synapses on spines appeared as complete or partial annuli. Even in the zones of densest innervation only 3% of the asymmetric synapses were formed by the labeled boutons. Although the V1 projection forms only a small minority of synapses in V5, its affect could be considerably amplified by local circuits in V5, in a way analogous to the amplification of the small thalamic input to area V1. Key words: visual cortex; area MT; corticocortical; synapse morphology; postsynaptic target; 3-D reconstructionThe best-studied extrastriate area is that first discovered by Zeki (1969), who used anatomical methods to define an area in the posterior bank of the superior temporal sulcus in macaque monkey that received an input from area 17. The homologous area in the new-world monkey is the middle temporal area (MT) (Allman and Kaas, 1971). From the earliest recordings, it was evident that the neurons of this area, now called MT or V5, were particularly sensitive to the direction and velocity of motion of the stimulus (Dubner and Z eki, 1971).There are both direct and indirect projections from V1 to area V5 (Z eki, 1969;Ungerleider and Mishkin, 1979;Maunsell and Van Essen, 1983;Fries et al., 1985). The neurons that project directly from V1 have been identified as spiny stellates and pyramidal cells in layer 4B and large pyramidal cells in upper layer 6 (L und et al., 1975;Shipp and Z eki, 1989). Their afferent axons form large boutons in a patchy distribution in layers 3, 4, and 6 of V5 (Rockland, 1989(Rockland, , 1995. The receptive fields of the V1 neurons that project to V5 have also been studied. The projecting neurons were identified by antidromically activating them from V5 (Movshon and Newsome, 1996). They had fastconducting axons and all were binocular, complex cells, with high-contrast sensitivity and contrast-independent direction preferences. They responded at least as well to short stimuli as to long stimuli. Such complex cells are referred to as special (Palmer and Rosenquist, 1974) and have the largest receptive fields, the highest velocity preference, and the highest spontaneity of striate corti...
The axonal arbors of the different types of neocortical and thalamic neurons appear highly dissimilar when viewed in conventional 2D reconstructions. Nevertheless, we have found that their one-dimensional metrics and topologies are surprisingly similar. To discover this, we analysed the axonal branching pattern of 39 neurons (23 spiny, 13 smooth and three thalamic axons) that were filled intracellularly with horseradish peroxidase (HRP) during in vivo experiments in cat area 17. The axons were completely reconstructed and translated into dendrograms. Topological, fractal and Horton-Strahler analyses indicated that axons of smooth and spiny neurons had similar complexity, length ratios (a measure of the relative increase in the length of collateral segments as the axon branches) and bifurcation ratios (a measure of the relative increase in the number of collateral segments as the axon branches). We show that a simple random branching model (Galton-Watson process) predicts with reasonable accuracy the bifurcation ratio, length ratio and collateral length distribution of the axonal arbors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.