Digital flat-panel-based volume CT (VCT) represents a unique design capable of ultra-high spatial resolution, direct volumetric imaging, and dynamic CT scanning. This innovation, when fully developed, has the promise of opening a unique window on human anatomy and physiology. For example, the volumetric coverage offered by this technology enables us to observe the perfusion of an entire organ, such as the brain, liver, or kidney, tomographically (e.g., after a transplant or ischemic event). By virtue of its higher resolution, one can directly visualize the trabecular structure of bone. This paper describes the basic design architecture of VCT. Three key technical challenges, viz., scatter correction, dynamic range extension, and temporal resolution improvement, must be addressed for successful implementation of a VCT scanner. How these issues are solved in a VCT prototype and the modifications necessary to enable ultra-high resolution volumetric scanning are described. The fundamental principles of scatter correction and dose reduction are illustrated with the help of an actual prototype. The image quality metrics of this prototype are characterized and compared with a multi-detector CT (MDCT).
Purpose Despite 20 years of research, there remains no robust, globally agreed upon method-or even problem statement-for assessing mineral resource inputs in life cycle impact assessment (LCIA). As a result, inclusion of commonly used methods such as abiotic depletion potential (ADP) in life cycle assessment (LCA)-related evaluation schemes could lead to incorrect decisions being made in many applications. In this paper, we explore in detail how to improve the way that life cycle thinking is applied to the acquisition of mineral resources and their metal counterparts. Methods This paper evaluates the current body of work in LCIA with regard to Bdepletion potential^of mineral resources. Viewpoints from which models are developed are described and analyzed. The assumptions, data sources, and calculations that underlie currently used methods are examined. A generic metal-containing product is analyzed to demonstrate the vulnerability of results to the denominator utilized in calculating ADP. The adherence to the concept of the area of protection (AOP) is evaluated for current models. The use of ore grades, prices, and economic availability in LCIA is reviewed.Results and discussion Results demonstrate that any work on resource depletion in a life cycle context needs to have a very clear objective or LCIA will not accurately characterize mineral resource use from any perspective and decision-making will continue to suffer. New, harmonized terminology is proposed so that LCA practitioners can build better mutual understanding with the mineral industry and recommendations regarding more promising tools for use in life cycle sustainability assessment (LCSA) are given. Conclusions The economic issue of resource availability should be evaluated in parallel with traditional LCA, not within. LCIA developers should look to economists, the market, and society in general, for broader assessments that consider shorter-time horizons than the traditional LCIA methods. To do so, the concept of the AOP in LCA needs to be redefined for LCSA to ensure that models estimate what is intended. Finally, recommendations regarding mineral resource assessment are provided to ensure that future research has a sound basis and practitioners can incorporate the appropriate tools in their work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.