Background: Concern over bio-terrorism has led to recognition that traditional public health surveillance for specific conditions is unlikely to provide timely indication of some disease outbreaks, either naturally occurring or induced by a bioweapon. In non-traditional surveillance, the use of health care resources are monitored in "near real" time for the first signs of an outbreak, such as increases in emergency department (ED) visits for respiratory, gastrointestinal or neurological chief complaints (CC).
Abstract:The performance of weak gaseous plume-detection methods in hyperspectral long-wave infrared imagery depends on scene-specific conditions such at the ability to properly estimate atmospheric transmission, the accuracy of estimated chemical signatures, and background clutter. This paper reviews commonly-applied physical models in the context of weak plume identification and quantification, identifies inherent error sources as well as those introduced by making simplifying assumptions, and indicates research areas.
The performance of Radio-Isotope Identification (RIID) algorithms using NaI-based γ spectroscopy is increasingly important. For example, sensors at locations that screen for illicit nuclear material rely on isotope identification using NaI detectors to distinguish innocent nuisance alarms, arising from naturally occurring radioactive material, from alarms arising from threat isotopes. Recent data collections for RIID testing consist of repeat measurements for each of several measurement scenarios to test RIID algorithms. It is anticipated that vendors can modify their algorithms on the basis of performance on chosen measurement scenarios and then test modified algorithms on data for other measurement scenarios. It is therefore timely to review the current status of RIID algorithms on NaI detectors. This review describes γ spectra from NaI detectors, measurement issues and challenges, current RIID algorithms, data preprocessing steps, the role and current quality of synthetic spectra, and opportunities for improvements
Nuclear material accounting (NMA) is the only safeguards system whose benefits are routinely quantified. Process monitoring (PM) is another safeguards system that is increasingly used, and one challenge is how to quantify its benefit. This paper considers PM in the role of enabling frequent NMA, which is referred to as near-real-time accounting (NRTA). We quantify NRTA benefits using period-driven and data-driven testing. Period-driven testing makes a decision to alarm or not at fixed periods. Data-driven testing decides as the data arrives whether to alarm or continue testing. The difference between period-driven and datad-riven viewpoints is illustrated by using one-year and two-year periods. For both one-year and two-year periods, period-driven NMA using once-per-year cumulative material unaccounted for (CUMUF) testing is compared to more frequent Shewhart and joint sequential cusum testing using either MUF or standardized, independently transformed MUF (SITMUF) data. We show that the data-driven viewpoint is appropriate for NRTA and that it can be used to compare safeguards effectiveness. In addition to providing period-driven and data-driven viewpoints, new features include assessing the impact of uncertainty in the estimated covariance matrix of the MUF sequence and the impact of both random and systematic measurement errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.