In this prospective trial, patients with enhanced clinical risk and omitted chemotherapy on the basis of RS ≤ 11 had excellent 3-year survival. The substantial discordance observed between traditional prognostic markers and RS emphasizes the need for standardized assessment and supports the potential integration of standardized, well-validated genomic assays such as RS with clinicopathologic prognostic factors for chemotherapy indication in early hormone receptor-positive BC.
PURPOSE Neoadjuvant systemic treatment (NST) elicits a pathologic complete response in 40%-70% of women with breast cancer. These patients may not need surgery as all local tumor has already been eradicated by NST. However, nonsurgical approaches, including imaging or vacuum-assisted biopsy (VAB), were not able to accurately identify patients without residual cancer in the breast or axilla. We evaluated the feasibility of a machine learning algorithm (intelligent VAB) to identify exceptional responders to NST. METHODS We trained, tested, and validated a machine learning algorithm using patient, imaging, tumor, and VAB variables to detect residual cancer after NST (ypT+ or in situ or ypN+) before surgery. We used data from 318 women with cT1-3, cN0 or +, human epidermal growth factor receptor 2–positive, triple-negative, or high-proliferative Luminal B–like breast cancer who underwent VAB before surgery ( NCT02948764 , RESPONDER trial). We used 10-fold cross-validation to train and test the algorithm, which was then externally validated using data of an independent trial ( NCT02575612 ). We compared findings with the histopathologic evaluation of the surgical specimen. We considered false-negative rate (FNR) and specificity to be the main outcomes. RESULTS In the development set (n = 318) and external validation set (n = 45), the intelligent VAB showed an FNR of 0.0%-5.2%, a specificity of 37.5%-40.0%, and an area under the receiver operating characteristic curve of 0.91-0.92 to detect residual cancer (ypT+ or in situ or ypN+) after NST. Spiegelhalter's Z confirmed a well-calibrated model ( z score –0.746, P = .228). FNR of the intelligent VAB was lower compared with imaging after NST, VAB alone, or combinations of both. CONCLUSION An intelligent VAB algorithm can reliably exclude residual cancer after NST. The omission of breast and axillary surgery for these exceptional responders may be evaluated in future trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.