Background
Noise levels on intensive care units (ICUs) are typically elevated. While many studies reported negative effects of ICU ambient sounds on patients, only few investigated noise as a factor to influence well-being or performance in healthcare professionals.
Methods
An online survey in the German-speaking part of Switzerland was conducted to assess how ICU soundscapes are subjectively perceived by healthcare professionals. The questionnaire was answered by 348 participants. Additionally, effects of noise on working memory performance were evaluated in an experimental noise exposure setting. Twenty-six healthcare professionals and 27 healthy controls performed a 2-back object-location task while being exposed to either ICU or pink noise.
Results
Survey results demonstrate that a majority of participants was aware of heightened noise levels. Participants reported that mostly well-being, performance, and attention could be reduced, along with subjective annoyance and fatigue by ICU ambient sounds. Although no significant effects of noise exposure on working memory performance was observed, self-assessments revealed significantly higher stress levels, increased annoyance and distraction ratings as well as decreased confidence in performance after ICU-noise exposure.
Conclusion
Subjective assessments indicate that heightened noise levels on ICUs induce annoyance, with heightened stress levels, impaired well-being, and reduced performance being potential consequences. Empirical evidence with objective and physiological measures is warranted.
Objective To measure the audiological benefit of the Baha SoundArc, a recently introduced nonimplantable wearing option for bone conduction sound processor, and to compare it with the known softband wearing option in subjects with normal cochlear function and a purely conductive bilateral hearing loss. Methods Both ears of 15 normal hearing subjects were occluded for the time of the measurement, yielding an average unaided threshold of 49 dB HL (0.5 – 4 kHz). Soundfield thresholds, speech understanding in quiet and in noise, and sound localization were measured in unaided conditions and with 1 or 2 Baha 5 sound processors mounted on either a softband or a SoundArc device. Results Soundfield thresholds and speech reception thresholds were improved by 19.5 to 24.8 dB (p<.001), when compared to the unaided condition. Speech reception thresholds in noise were improved by 3.7 to 4.7 dB (p<.001). Using 2 sound processors rather than one improved speech understanding in noise for speech from the direction of the 2nd device and sound localization error by 23° to 28°. No statistically significant difference was found between the SoundArc and the softband wearing options in any of the tests. Conclusions Bone conduction sound processor mounted on a SoundArc or on a softband resulted in considerable improvements in hearing and speech understanding in subjects with a simulated, purely conductive, and bilateral hearing loss. No significant difference between the 2 wearing options was found. Using 2 sound processors improves sound localization and speech understanding in noise in certain spatial settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.