Conducting polymer hydrogels (CPHs) emerge as excellent functional materials, as they harness the advantages of conducting polymers with the mechanical properties and continuous 3D nanostructures of hydrogels. This bicomponent organization results in soft, all-organic, conducting micro-/nanostructures with multifarious material applications. However, the application of CPHs as functional materials for biomedical applications is currently limited due to the necessity to combine the features of biocompatibility, self-healing, and fine-tuning of the mechanical properties. To overcome this issue, we choose to combine a protected dipeptide as the supramolecular gelator, owing to its intrinsic biocompatibility and excellent gelation ability, with the conductive polymer polyaniline (PAni), which was polymerized in situ. Thus, a two-component, all-organic, conducting hydrogel was formed. Spectroscopic evidence reveals the formation of the emeraldine salt form of PAni by intrinsic doping. The composite hydrogel is mechanically rigid with a very high storage modulus (G′) value of ~2 MPa, and the rigidity was tuned by changing the peptide concentration. The hydrogel exhibits ohmic conductivity, pressure sensitivity, and, importantly, self-healing features. By virtue of its self-healing property, the polymeric nonmetallic hydrogel can reinstate its intrinsic conductivity when two of its macroscopically separated blocks are rejoined. High cell viability of cardiomyocytes grown on the composite hydrogel demonstrates its noncytotoxicity. These combined attributes of the hydrogel allowed its utilization for dynamic range pressure sensing and as a conductive interface for electrogenic cardiac cells. The composite hydrogel supports cardiomyocyte organization into a spontaneously contracting system. The composite hydrogel thus has considerable potential for various applications.
Self‐assembled peptide hydrogels represent the realization of peptide nanotechnology into biomedical products. There is a continuous quest to identify the simplest building blocks and optimize their critical gelation concentration (CGC). Herein, a minimalistic, de novo dipeptide, Fmoc‐Lys(Fmoc)‐Asp, as an hydrogelator with the lowest CGC ever reported, almost fourfold lower as compared to that of a large hexadecapeptide previously described, is reported. The dipeptide self‐assembles through an unusual and unprecedented two‐step process as elucidated by solid‐state NMR and molecular dynamics simulation. The hydrogel is cytocompatible and supports 2D/3D cell growth. Conductive composite gels composed of Fmoc‐Lys(Fmoc)‐Asp and a conductive polymer exhibit excellent DNA binding. Fmoc‐Lys(Fmoc)‐Asp exhibits the lowest CGC and highest mechanical properties when compared to a library of dipeptide analogues, thus validating the uniqueness of the molecular design which confers useful properties for various potential applications.
A comprehensive minimalistic model for spontaneous structural transition that is governed by distinct molecular interactions.
The noncoded aromatic 3,4-dihydroxy-l-phenylalanine (DOPA) amino acid has a pivotal role in the remarkable adhesive properties displayed by marine mussels. These properties have inspired the design of adhesive chemical entities through various synthetic approaches. DOPA-containing bioinspired polymers have a broad functional appeal beyond adhesion due to the diverse chemical interactions presented by the catechol moieties. Here, we harnessed the molecular self-assembly abilities of very short peptide motifs to develop analogous DOPA-containing supramolecular polymers. The DOPA-containing DOPA–DOPA and Fmoc–DOPA–DOPA building blocks were designed by substituting the phenylalanines in the well-studied diphenylalanine self-assembling motif and its 9-fluorenylmethoxycarbonyl (Fmoc)-protected derivative. These peptides self-organized into fibrillar nanoassemblies, displaying high density of catechol functional groups. Furthermore, the Fmoc–DOPA–DOPA peptide was found to act as a low molecular weight hydrogelator, forming self-supporting hydrogel which was rheologically characterized. We studied these assemblies using electron microscopy and explored their applicative potential by examining their ability to spontaneously reduce metal cations into elementary metal. By applying ionic silver to the hydrogel, we observed efficient reduction into silver nanoparticles and the remarkable seamless metallic coating of the assemblies. Similar redox abilities were observed with the DOPA–DOPA assemblies. In an effort to impart adhesiveness to the obtained assemblies, we incorporated lysine (Lys) into the Fmoc–DOPA–DOPA building block. The assemblies of Fmoc–DOPA–DOPA–Lys were capable of gluing together glass surfaces, and their adhesion properties were investigated using atomic force microscopy. Taken together, a class of DOPA-containing self-assembling peptides was designed. These nanoassemblies display unique properties and can serve as multifunctional platforms for various biotechnological applications.
Peptidomimetic low‐molecular‐weight hydrogelators, a class of peptide‐like molecules with various backbone amide modifications, typically give rise to hydrogels of diverse properties and increased stability compared to peptide hydrogelators. Here, a new peptidomimetic low‐molecular‐weight hydrogelator is designed based on the well‐studied N ‐fluorenylmethoxycarbonyl diphenylalanine (Fmoc‐FF) peptide by replacing the amide bond with a frequently employed amide bond surrogate, the urea moiety, aiming to increase hydrogen bonding capabilities. This designed ureidopeptide, termed Fmoc—Phe—NHCONH—Phe—OH (Fmoc‐FuF), forms hydrogels with improved mechanical properties, as compared to those formed by the unmodified Fmoc‐FF. A combination of experimental and computational structural methods shows that hydrogen bonding and aromatic interactions facilitate Fmoc‐FuF gel formation. The Fmoc‐FuF hydrogel possesses properties favorable for biomedical applications, including shear thinning, self‐healing, and in vitro cellular biocompatibility. Additionally, the Fmoc‐FuF, but not Fmoc‐FF, hydrogel presents a range of functionalities useful for other applications, including antifouling, slow release of urea encapsulated in the gel at a high concentration, selective mechanical response to fluoride anions, and reduction of metal ions into catalytic nanoparticles. This study demonstrates how a simple backbone modification can enhance the mechanical properties and functional scope of a peptide hydrogel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.