The rational discovery of new specialized metabolites by genome mining represents a very promising strategy in the quest for new bioactive molecules. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural product that derive from genetically encoded precursor peptides. However, RiPP gene clusters are particularly refractory to reliable bioinformatic predictions due to the absence of a common biosynthetic feature across all pathways. Here, we describe RiPPER, a new tool for the family-independent identification of RiPP precursor peptides and apply this methodology to search for novel thioamidated RiPPs in Actinobacteria. Until now, thioamidation was believed to be a rare post-translational modification, which is catalyzed by a pair of proteins (YcaO and TfuA) in Archaea. In Actinobacteria, the thioviridamide-like molecules are a family of cytotoxic RiPPs that feature multiple thioamides, which are proposed to be introduced by YcaO-TfuA proteins. Using RiPPER, we show that previously undescribed RiPP gene clusters encoding YcaO and TfuA proteins are widespread in Actinobacteria and encode a highly diverse landscape of precursor peptides that are predicted to make thioamidated RiPPs. To illustrate this strategy, we describe the first rational discovery of a new structural class of thioamidated natural products, the thiovarsolins from Streptomyces varsoviensis .
Thiostreptamide S4 is a thioamitide, a family of promising antitumour ribosomally synthesised and post-translationally modified peptides (RiPPs). The thioamitides are one of the most structurally complex RiPP families, yet very...
Heterologous expression of biosynthetic gene clusters (BGCs) represents an attractive route to the production of new natural products, but is often hampered by poor yields. It is therefore important to develop tools that enable rapid refactoring, gene insertion/deletion, and targeted mutations in BGCs. Ideally, these tools should be highly efficient, affordable, accessible, marker free, and flexible for use with a wide range of BGCs. Here, we present a one-step yeast-based method that enables efficient, cheap, and flexible modifications to BGCs. Using the BGC for the antibiotic bottromycin, we showcase multiple modifications including refactoring, gene deletions and targeted mutations. This facilitated the construction of an inducible, riboswitch-controlled pathway that achieved a 120-fold increase in pathway productivity in a heterologous streptomycete host. Additionally, an unexpected biosynthetic bottleneck resulted in the production of a suite of new bottromycin-related metabolites.
The rational discovery of new specialized metabolites by genome mining represents a very promising strategy in the quest for new bioactive molecules. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural product that derive from genetically encoded precursor peptides. However, RiPP gene clusters are particularly refractory to reliable bioinformatic predictions due to the absence of a common biosynthetic feature across all pathways. Here, we describe RiPPER, a new tool for the family-independent identification of RiPP precursor peptides and apply this methodology to search for novel thioamidated RiPPs in Actinobacteria. Until now, thioamidation was believed to be a rare post-translational modification, which is catalyzed by a pair of proteins (YcaO and TfuA) in Archaea. In Actinobacteria, the thioviridamide-like molecules are a family of cytotoxic RiPPs that feature multiple thioamides, and it has been proposed that a YcaO-TfuA pair of proteins also catalyzes their formation. Potential biosynthetic gene clusters encoding YcaO and TfuA protein pairs are common in Actinobacteria but the chemical diversity generated by these pathways is almost completely unexplored. A RiPPER analysis reveals a highly diverse landscape of precursor peptides encoded in previously undescribed gene clusters that are predicted to make thioamidated RiPPs. To illustrate this strategy, we describe the first rational discovery of a new family of thioamidated natural products, the thiovarsolins from Streptomyces varsoviensis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.