The diversification of ecological roles and related adaptations in closely related species within a lineage is one of the most important processes linking plant evolution and ecology. Plant architecture offers a robust framework to study these processes as it can highlight how plant structure influences plant diversification and ecological strategies. We investigated a case of gradual evolution of branching architecture in Atractocarpus spp. (Rubiaceae), forming a monophyletic group in New Caledonia that has diversified rapidly, predominantly in rainforest understory habitats. We used a transdisciplinary approach to depict architectural variations and revealed multiple evolutionary transitions from a branched (Stone's architectural model) to a monocaulous habit (Corner's architectural model), which involved the functional reduction of branches into inflorescences. We propose an integrative functional index that assesses branching incidence on functional traits influencing both assimilation and exploration functions. We showed that architectural transitions correlate with ecologically important functional traits. Variation in ecologically important traits among closely relatives, as supported by the architectural analysis, is suggestive of intense competition that favored divergence among locally coexisting species. We propose that Pleistocene climatic fluctuations causing expansion and contraction of rainforest could also have offered ecological opportunities for colonizers in addition to the process of divergent evolution.
Climbing plants need to reach supports and position their leaves for light capture. Vines and lianas develop a large diversity of self-supporting shoots among diverse species and different kinds of attachment. A searcher’s reach is a crucial trait for colonising supports in complex three-dimensional spaces. We explore the reach capacity and diversity of searcher shoots among representative temperate and tropical climbing plants. We investigate the overall range of variation between short- and long-reach searchers; the mechanical and anatomical organisations underlying reach capacities; how searcher architectures are linked to different climbing strategies such as stem twining, tendril climbing, root climbing, and branch-angle-hook climbing. We investigated reach and mechanical and anatomical organisations (stem rigidity and stiffness, stem and tissue geometry) in 29 climbing plant species from temperate and tropical habitats. Searchers show a wide range of maximal reach per species from 0.1 to 2.5 m. Flexural rigidity (EI) at the base of searchers increased with reach length; overall this increase was proportional although some longest-reaching shoots develop proportionally thinner searcher bases with higher stiffness [structural Young’s modulus (Estr)] than shorter-reach shoots. Bases of short-reach searchers rely more on primary tissues compared to long-reach shoots, which rely more on wood production. We identified different mechanical architectures for a given reach capacity across all species. These are linked to different kinds of attachment mechanisms, support foraging, and possibly leaf display. Plants attaching by twining of the main stem showed a wide range of reach capacity. They also developed lighter, more slender, less rigid, but generally relatively stiff (higher Estr) shoots compared with tendril climbers and branch-angle-hook climbers. Differences in the mechanical architecture of searcher shoots in climbing plants are informative for understanding how diverse climbing plant species explore and colonise different kinds of three-dimensional spaces. This is a key feature that distinguishes different habitat preferences. We discuss how such knowledge is not only important for understanding functional biology and ecology of climbing plants but is also of interest for developing new technologies in soft robotics that mimic climbing plants that can navigate through unstructured environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.