Among the many sources of event data available today, a prominent one is user interaction data. User activity may be recorded during the use of an application or website, resulting in a type of user interaction data often called click data. An obstacle to the analysis of click data using process mining is the lack of a case identifier in the data. In this paper, we show a case and user study for event-case correlation on click data, in the context of user interaction events from a mobility sharing company. To reconstruct the case notion of the process, we apply a novel method to aggregate user interaction data in separate user sessions-interpreted as cases-based on neural networks. To validate our findings, we qualitatively discuss the impact of process mining analyses on the resulting well-formed event log through interviews with process experts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.