Background and Objective: Clinical Engineering professionals are fundamental to the deployment of healthcare technology and to the management of its life cycle. As the role of technology grows in healthcare, so does the need for trained clinical engineering practitioners and the dynamic nature of the domain requires them to maintain their skills. However, the skills and activities required from clinical engineers around the world are not homogeneous, so the Clinical Engineering Division at IFMBE promoted a global survey to identify a common body of knowledge and body of practices for the profession. Material and Methods: This survey, based on a previous one conducted by the ACCE, was aimed at collecting data about CE practices and the importance of certain competencies for their practitioners. Results: Survey results indicate the profession still maintains certain traditional characteristics, such as the predominance of professionals with a background in electrical, electronic, or mechanical engineering and the prevalence of hospitals and clinics as employers. Some patterns in the perceived relevance of certain kinds of knowledge among different regions were also identified. Conclusion: Overall, the survey seems adequate to reveal which skills and activities clinical engineers considered the most relevant, but more responses are required before a solid Body of Knowledge and Body of Practice can be defined.
In this paper, we examine the practice level of engineers and discuss whether Clinical Engineering is a profession or an occupation. Many think that occupation and profession are synonyms, but are they? One must explore the difference, if it exists, between these terms, and to accomplish that, clarification of these terms is being offered and established first. We conducted a review of the terms and proceeded to identify if the tenants that are expected to be associated with professional standing are included in applying clinical engineering practices and to what level if it is. Engineering is a profession that improves the quality of living and for the common good. The professional education of engineers requires the education to contain a body of specialized knowledge, problem-solving skills, ethical behavior, and good analytical judgment in the service of all people. The engineering education domains aim to form individuals who are intellectually trained, practically adept, and ethically accountable for their work. Especially within the healthcare delivery system, engineering work engages problem-solving dependent upon sufficient body of knowledge to deal with practical problems by understanding the why, knowing how and identifying the when. There are various levels of the expected body of knowledge within the clinical engineering field ranging from engineers with formal academic training at undergraduate and graduate levels to clinical engineering technologists and technicians having graduated from between 1-4 years of academic training. Engineers may further select to publicly proclaim their adequate preparation and mastering of knowledge to conduct their work through a credentialing process that can confer the term professional, registered, or certified engineer if successfully achieved. Once the differences of working characteristics and obligations between occupation and profession are understood, it is clear that clinical engineers must continuously commit to pursue and fulfill these obligations. Therefore, every professional engineer is called on to achieve a certain degree of intellectual and technical mastery and acquire practical wisdom that brings together the knowledge and skills that best serve a particular purpose for the good of humanity. Clinical engineers and technologists are critical for sustaining the availability of safe, effective, and appropriate technology for patient care. It is as important for their associations to collaborate on compliance with professional obligations that their jobs require.
Many colleagues have written about the global reliance on health technologies whose innovation, deployment and supportcontinue to improve worldwide healthcare and its delivery. The World Health Organization’s-WHO 2007 Resolution WHA60.29called for the effective use of health technologies (HT), in particular medical devices, through proper planning, assessment,acquisition and management.The community of professional clinical engineering (CE) practitioners’ pre-COVID19 stories are captured in the Global ClinicalEngineering Journal. An article from 2022 shows the reasons for the increased contributions of this community especially duringthe pandemic in The Growing Role of Clinical Engineering: Merging Technology at the Point of Care.This article will answer questions such as to how this global reliance was demonstrated during the COVID19 period. How thestatus of the Clinical/Biomedical Engineering (CE/BME) profession that serves at the point of care changed as the world emergesfrom the huge stresses of the pandemic. The article reviews the evolution of the CE profession since 2020, how it partneredwith WHO between 2020-2022 and what lessons were learned in the process. It reports future CE priorities to improve country,regional, and global practice in 2023 and beyond. This timely preliminary report shares important findings related to patientcare support services.
To determine the maturity of a profession one must have knowledge of the individual attributes of the practitioners of that profession and the universal strength of unique skills among them. We have conducted an international survey of Clinical Engineering (CE) professionals associated with the management of technological tools developed for and deployed within the healthcare delivery system. The survey targeted participants who are practicing engineering tasks related to the safe and efficient management of technology used in the delivery of healthcare services. The participants, consisted of cohort of individuals whose contact information was collected from attendees at previous clinical and biomedical engineering events including: (1) presentation at congresses/regional meetings, (2) serving on international technical committees or task forces, (3) attending virtual clinical engineering events, or (4) subscribing to the Global Clinical Engineering Journal. The purpose of the survey was to identify the state of organization of CE professionals and the potential gaps, if any exists, in meeting their professional development needs. The survey was developed and conducted using on-line internet apps and links that provided access to a questionnaire in six different languages to facilitate optimal participation and response accuracy in as many geographical regions as possible. The survey was conducted in the early part of 2020 over period of 6 weeks. The overall response rate1 was over 5% (total of 14,400 individual contacts less estimated 1,750 contacts who did not open/bounced back). A total of 667 responses from 89 countries were received. This survey is considered an improvement, over previously reported international surveys2,3, with regard to response volume and rate. The strength of this survey, having larger response volume and geographical representation, when compared with previously documented CE surveys has improved even with narrower time window of data collection. The current survey consisted of twelve questions, beginning with information request about the respondent professional affiliation and moves on to request the ranking of the criticality of C.E. specific issues, while another question provided for comments in free formatting text style. The responses received were in all of the seven languages posted and included representation from all the continents. The analysis of the survey responses shows that about 60% of the responders identified themselves as clinical engineers, 16% as other type of engineers, 13% as technicians, and 12% as health professionals. Responses to particular questions demonstrate highest ratio of number of affirmative to negative responses. They were related to the perceived value responders placed on stronger international collaboration and on their willingness to engage in it. A conclusion, based on the analysis of the responses to this international survey, that the CE profession is awaiting the consolidation of the momentum generated by growing healthcare needs and present global conditions. The identified gap is lack of a dedicated international representation that is clearly identifiable within the CE field. Analysis of the survey data suggests the need of an international framework focusing on the various CE professional groups/associations and their members to face present challenges. The establishment of a global alliance to clearly identify the field of clinical engineering; to promote public awareness; to form liaison with government agencies and other healthcare decision makers, will improve global cooperation and inter CE societal relations that will serve patients as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.