The majority of monogenic disorders cause craniofacial abnormalities with characteristic facial morphology. These disorders can be diagnosed more e ciently with the support of computer-aided nextgeneration phenotyping tools, such as DeepGestalt. These tools have learned to associate facial phenotypes with the underlying syndrome through training on thousands of patient photographs. However, this "supervised" approach means that diagnoses are only possible if they were part of the training set. To improve recognition of ultra-rare diseases, we created GestaltMatcher, which uses a deep convolutional neural network based on the DeepGestalt framework. We used photographs of 21,836 patients with 1,362 rare disorders to de ne a "Clinical Face Phenotype Space". Distance between cases in the phenotype space de nes syndromic similarity, allowing test patients to be matched to a molecular diagnosis even when the disorder was not included in the training set. Similarities among patients with previously unknown disease genes can also be detected. Therefore, in concert with mutation data, GestaltMatcher could accelerate the clinical diagnosis of patients with ultra-rare disorders and facial dysmorphism.
PurposePhenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists.MethodsHere, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 individuals with 105 different monogenic disorders. For each case in the cohort we compiled frontal photos, clinical features, and the disease-causing variants, and simulated multiple exomes of different ethnic backgrounds.ResultsThe additional use of similarity scores from computer-assisted analysis of frontal photos improved the top 1 accuracy rate by more than 20–89% and the top 10 accuracy rate by more than 5–99% for the disease-causing gene.ConclusionImage analysis by deep-learning algorithms can be used to quantify the phenotypic similarity (PP4 criterion of the American College of Medical Genetics and Genomics guidelines) and to advance the performance of bioinformatics pipelines for exome analysis.
The identification of disease-causing mutations in next-generation sequencing (NGS) data requires efficient filtering techniques. In patients with rare recessive diseases, compound heterozygosity of pathogenic mutations is the most likely inheritance model if the parents are non-consanguineous. We developed a web-based compound heterozygous filter that is suited for data from NGS projects and that is easy to use for non-bioinformaticians. We analyzed the power of compound heterozygous mutation filtering by deriving background distributions for healthy individuals from different ethnicities and studied the effectiveness in trios as well as more complex pedigree structures. While usually more then 30 genes harbor potential compound heterozygotes in single exomes, this number can be markedly reduced with every additional member of the pedigree that is included in the analysis. In a real data set with exomes of four family members, two sisters affected by Mabry syndrome and their healthy parents, the disease-causing gene PIGO, which harbors the pathogenic compound heterozygous variants, could be readily identified. Compound heterozygous filtering is an efficient means to reduce the number of candidate mutations in studies aiming at identifying recessive disease genes in non-consanguineous families. A web-server is provided to make this filtering strategy available at www.gene-talk.de.
The majority of monogenic disorders cause craniofacial abnormalities with characteristic facial morphology. These disorders can be diagnosed more efficiently with the support of computer-aided next-generation phenotyping tools, such as DeepGestalt. These tools have learned to associate facial phenotypes with the underlying syndrome through training on thousands of patient photographs. However, this “supervised” approach means that diagnoses are only possible if they were part of the training set. To improve recognition of ultra-rare diseases, we created GestaltMatcher, which uses a deep convolutional neural network based on the DeepGestalt framework. We used photographs of 21,836 patients with 1,362 rare disorders to define a “Clinical Face Phenotype Space”. Distance between cases in the phenotype space defines syndromic similarity, allowing test patients to be matched to a molecular diagnosis even when the disorder was not included in the training set. Similarities among patients with previously unknown disease genes can also be detected. Therefore, in concert with mutation data, GestaltMatcher could accelerate the clinical diagnosis of patients with ultra-rare disorders and facial dysmorphism.
Summary: Next-generation sequencing has become a powerful tool in personalized medicine. Exomes or even whole genomes of patients suffering from rare diseases are screened for sequence variants. After filtering out common polymorphisms, the assessment and interpretation of detected personal variants in the clinical context is an often time-consuming effort. We have developed GeneTalk, a web-based platform that serves as an expert exchange network for the assessment of personal and potentially disease-relevant sequence variants. GeneTalk assists a clinical geneticist who is searching for information about specific sequence variants and connects this user to other users with expertise for the same sequence variant.Availability: GeneTalk is available at www.gene-talk.de. Users can login without registering in a demo account.Contact: peter.krawitz@gene-talk.de
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.